Puoi utilizzare ML Kit per etichettare gli oggetti riconosciuti in un'immagine utilizzando un modello on-device o un modello cloud. Consulta la panoramica per scoprire i vantaggi di ciascun approccio.
Prima di iniziare
- Se non lo hai già fatto, aggiungi Firebase al tuo progetto Android.
- Aggiungi le dipendenze per le librerie Android di ML Kit al file Gradle del tuo modulo (a livello di app) (di solito
app/build.gradle
):apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' implementation 'com.google.firebase:firebase-ml-vision-image-label-model:20.0.1' }
-
Facoltativo, ma consigliato: se utilizzi l'API on-device, configura la tua app in modo che scarichi automaticamente il modello di ML sul dispositivo dopo l'installazione dall'app Play Store.
Per farlo, aggiungi la seguente dichiarazione al file
AndroidManifest.xml
della tua app: Se non attivi i download dei modelli al momento dell'installazione, il modello verrà scaricato la prima volta che esegui il rilevatore sul dispositivo. Le richieste inviate prima del completamento del download non produrranno risultati.<application ...> ... <meta-data android:name="com.google.firebase.ml.vision.DEPENDENCIES" android:value="label" /> <!-- To use multiple models: android:value="label,model2,model3" --> </application>
-
Se vuoi utilizzare il modello basato su Cloud e non hai ancora attivato le API basate su Cloud per il tuo progetto, fallo ora:
- Apri la pagina API ML Kit della console Firebase.
-
Se non hai ancora eseguito l'upgrade del progetto a un piano tariffario Blaze, fai clic su Esegui l'upgrade per farlo. Ti verrà chiesto di eseguire l'upgrade solo se il progetto non è nel piano Blaze.
Solo i progetti a livello Blaze possono utilizzare le API basate su cloud.
- Se le API basate su cloud non sono già abilitate, fai clic su Abilita API basate su cloud.
Se vuoi utilizzare solo il modello sul dispositivo, puoi saltare questo passaggio.
Ora puoi etichettare le immagini utilizzando un modello on-device o un modello basato su cloud.
1. Prepara l'immagine di input
Crea un oggettoFirebaseVisionImage
dalla tua immagine.
L'etichettatore di immagini funziona più velocemente se utilizzi un Bitmap
o, se utilizzi l'API camera2, un Bitmap
in formato JPEG, che sono consigliati se possibile.media.Image
-
Per creare un oggetto
FirebaseVisionImage
da un oggettomedia.Image
, ad esempio quando acquisisci un'immagine dalla fotocamera di un dispositivo, passa l'oggettomedia.Image
e la rotazione dell'immagine aFirebaseVisionImage.fromMediaImage()
.Se utilizzi la libreria CameraX, le classi
OnImageCapturedListener
eImageAnalysis.Analyzer
calcolano il valore di rotazione per te, quindi devi solo convertire la rotazione in una delle costantiROTATION_
di ML Kit prima di chiamareFirebaseVisionImage.fromMediaImage()
:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
Se non utilizzi una libreria della fotocamera che ti fornisca la rotazione dell'immagine, puoi calcolarla dalla rotazione del dispositivo e dall'orientamento del sensore della fotocamera al suo interno:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Poi, passa l'oggetto
media.Image
e il valore di rotazione aFirebaseVisionImage.fromMediaImage()
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- Per creare un oggetto
FirebaseVisionImage
da un URI file, passa il contesto dell'app e l'URI file aFirebaseVisionImage.fromFilePath()
. Questa operazione è utile quando utilizzi un'intenzioneACTION_GET_CONTENT
per chiedere all'utente di selezionare un'immagine dalla sua app Galleria.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- Per creare un oggetto
FirebaseVisionImage
da unByteBuffer
o da un array di byte, calcola prima la rotazione dell'immagine come descritto sopra per l'inputmedia.Image
.Quindi, crea un oggetto
FirebaseVisionImageMetadata
contenente l'altezza, la larghezza, il formato di codifica dei colori e la rotazione dell'immagine:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Utilizza l'array o il buffer e l'oggetto dei metadati per creare un oggetto
FirebaseVisionImage
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- Per creare un oggetto
FirebaseVisionImage
da un oggettoBitmap
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
deve essere in verticale, senza alcuna rotazione aggiuntiva.
2. Configura ed esegui l'etichettatore di immagini
Per etichettare gli oggetti in un'immagine, passa l'oggettoFirebaseVisionImage
al metodo processImage
di FirebaseVisionImageLabeler
.
Innanzitutto, ottieni un'istanza di
FirebaseVisionImageLabeler
.Se vuoi utilizzare lo strumento di etichettatura delle immagini sul dispositivo:
Java
FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() .getOnDeviceImageLabeler(); // Or, to set the minimum confidence required: // FirebaseVisionOnDeviceImageLabelerOptions options = // new FirebaseVisionOnDeviceImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build(); // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() // .getOnDeviceImageLabeler(options);
Kotlin
val labeler = FirebaseVision.getInstance().getOnDeviceImageLabeler() // Or, to set the minimum confidence required: // val options = FirebaseVisionOnDeviceImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build() // val labeler = FirebaseVision.getInstance().getOnDeviceImageLabeler(options)
Se vuoi utilizzare lo strumento di etichettatura delle immagini sul cloud:
Java
FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() .getCloudImageLabeler(); // Or, to set the minimum confidence required: // FirebaseVisionCloudImageLabelerOptions options = // new FirebaseVisionCloudImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build(); // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() // .getCloudImageLabeler(options);
Kotlin
val labeler = FirebaseVision.getInstance().getCloudImageLabeler() // Or, to set the minimum confidence required: // val options = FirebaseVisionCloudImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build() // val labeler = FirebaseVision.getInstance().getCloudImageLabeler(options)
Quindi, passa l'immagine al metodo
processImage()
:Java
labeler.processImage(image) .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() { @Override public void onSuccess(List<FirebaseVisionImageLabel> labels) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin
labeler.processImage(image) .addOnSuccessListener { labels -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
3. Ricevere informazioni sugli oggetti etichettati
Se l'operazione di etichettatura delle immagini va a buon fine, un elenco di oggettiFirebaseVisionImageLabel
viene passato all'ascoltatore di eventi di successo. Ogni oggetto FirebaseVisionImageLabel
rappresenta un elemento
etichettato nell'immagine. Per ogni etichetta, puoi ottenere la descrizione del testo, l'ID entità Knowledge Graph (se disponibile) e il punteggio di affidabilità della corrispondenza. Ad esempio:
Java
for (FirebaseVisionImageLabel label: labels) {
String text = label.getText();
String entityId = label.getEntityId();
float confidence = label.getConfidence();
}
Kotlin
for (label in labels) {
val text = label.text
val entityId = label.entityId
val confidence = label.confidence
}
Suggerimenti per migliorare il rendimento in tempo reale
Se vuoi etichettare le immagini in un'applicazione in tempo reale, segui queste linee guida per ottenere le frequenze frame migliori:
- Regola le chiamate all'etichettatore delle immagini. Se un nuovo frame video diventa disponibile mentre l'etichettatrice delle immagini è in esecuzione, inseriscilo.
- Se utilizzi l'output dell'etichettatore di immagini per sovrapporre la grafica all'immagine di input, ottieni prima il risultato da ML Kit, poi esegui il rendering dell'immagine e il sovrapposizione in un unico passaggio. In questo modo, esegui il rendering sulla superficie di visualizzazione solo una volta per ogni frame di input.
-
Se utilizzi l'API Camera2, acquisisci le immagini in formato
ImageFormat.YUV_420_888
.Se utilizzi la precedente API Camera, acquisisci le immagini in formato
ImageFormat.NV21
.
Passaggi successivi
- Prima di eseguire il deployment in produzione di un'app che utilizza un'API Cloud, devi svolgere alcuni passaggi aggiuntivi per prevenire e ridurre l'effetto dell'accesso non autorizzato all'API.