يمكنك استخدام مجموعة أدوات تعلُّم الآلة لرصد العناصر وتتبُّعها على مستوى إطارات الفيديو.
عند تمرير صور ML Kit، يعرض كل صورة قائمة يتم رصد ما يصل إلى خمسة أشياء وتحديد موضعها في الصورة. عند الكشف الكائنات في مجموعات بث الفيديو، فكل كائن له معرّف يمكنك استخدامه لتتبع كائن عبر الصور. ويمكنك أيضًا اختياريًا تفعيل الكائن التقريبي. الذي يصنف الكائنات بأوصاف فئات واسعة.
قبل البدء
- إذا لم تكن قد فعلت ذلك بالفعل، إضافة Firebase إلى مشروع Android
- إضافة الموارد التابعة لمكتبات ML Kit على Android إلى الوحدة
(على مستوى التطبيق) ملف Gradle (عادةً
app/build.gradle
):apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' implementation 'com.google.firebase:firebase-ml-vision-object-detection-model:19.0.6' }
1- ضبط أداة رصد الكائنات
لبدء رصد العناصر وتتبُّعها، أنشئ أولاً مثيلاً
FirebaseVisionObjectDetector
، بشكل اختياري، تحديد أي إعدادات أداة رصد قمت
تريد تغييره من الإعداد الافتراضي.
ضبط أداة رصد العناصر لحالة الاستخدام من خلال عنصر
FirebaseVisionObjectDetectorOptions
. يمكنك تغيير ما يلي الإعدادات:إعدادات ميزة "رصد الأجسام" وضع الكشف STREAM_MODE
(الخيار التلقائي) |SINGLE_IMAGE_MODE
في
STREAM_MODE
(الإعداد التلقائي)، يتم تشغيل أداة رصد الكائنات ذات وقت استجابة سريع، ولكنها قد تؤدي إلى نتائج غير مكتملة (مثل صناديق حدود غير محددة أو تسميات الفئات) على الأجزاء القليلة الأولى استدعاءات أداة الكشف. أيضًا فيSTREAM_MODE
، تخصص أداة الكشف أرقام تعريف تتبع للكائنات، والتي يمكنك استخدامها وتتبع الكائنات عبر الإطارات. استخدِم هذا الوضع عندما تريد تتبُّع أو عندما يكون وقت الاستجابة البطيء مهمًا، كما هو الحال عند المعالجة أحداث الفيديو في الوقت الفعلي.بعد مرور
SINGLE_IMAGE_MODE
، تنتظر أداة رصد العناصر إلى أن يتم وضع مربع إحاطة كائن يتم اكتشافه (إذا قمت بذلك) تصنيف) هذه الفئة متاحة قبل عرض نتيجته. ونتيجة لذلك، من المحتمل أن يكون وقت استجابة الاكتشاف أعلى. وكذلك فيSINGLE_IMAGE_MODE
، لا تكون أرقام تعريف التتبُّع المهام المطلوبة. استخدم هذا الوضع إذا لم يكن وقت الاستجابة مهمًا ترغب في التعامل معها مع النتائج الجزئية.اكتشِف عناصر متعددة وتتبَّعها false
(الخيار التلقائي) |true
ما إذا كان سيتم رصد وتتبع ما يصل إلى خمسة عناصر أو أكثرها فقط كائن بارز (الافتراضي).
تصنيف العناصر false
(الخيار التلقائي) |true
تحديد ما إذا كان سيتم تصنيف العناصر المرصودة إلى فئات تقريبية أو لا. عند تفعيل هذه الميزة، تصنِّف أداة رصد الكائنات العناصر في الفئات التالية: سلع أزياء، طعام، سلع منزلية وأماكن ونباتات وغير معروفة.
تم تحسين واجهة برمجة التطبيقات لمراقبة الكائنات وتتبّعها لاستخدام هذين العنصرين الأساسيين الحالات:
- الرصد المباشر للجسم الأكثر بروزًا في الكاميرا وتتبُّعه عدسة الكاميرا
- رصد عناصر متعددة من صورة ثابتة
لضبط واجهة برمجة التطبيقات لحالات الاستخدام هذه:
Java
// Live detection and tracking FirebaseVisionObjectDetectorOptions options = new FirebaseVisionObjectDetectorOptions.Builder() .setDetectorMode(FirebaseVisionObjectDetectorOptions.STREAM_MODE) .enableClassification() // Optional .build(); // Multiple object detection in static images FirebaseVisionObjectDetectorOptions options = new FirebaseVisionObjectDetectorOptions.Builder() .setDetectorMode(FirebaseVisionObjectDetectorOptions.SINGLE_IMAGE_MODE) .enableMultipleObjects() .enableClassification() // Optional .build();
Kotlin+KTX
// Live detection and tracking val options = FirebaseVisionObjectDetectorOptions.Builder() .setDetectorMode(FirebaseVisionObjectDetectorOptions.STREAM_MODE) .enableClassification() // Optional .build() // Multiple object detection in static images val options = FirebaseVisionObjectDetectorOptions.Builder() .setDetectorMode(FirebaseVisionObjectDetectorOptions.SINGLE_IMAGE_MODE) .enableMultipleObjects() .enableClassification() // Optional .build()
الحصول على نسخة افتراضية من
FirebaseVisionObjectDetector
:Java
FirebaseVisionObjectDetector objectDetector = FirebaseVision.getInstance().getOnDeviceObjectDetector(); // Or, to change the default settings: FirebaseVisionObjectDetector objectDetector = FirebaseVision.getInstance().getOnDeviceObjectDetector(options);
Kotlin+KTX
val objectDetector = FirebaseVision.getInstance().getOnDeviceObjectDetector() // Or, to change the default settings: val objectDetector = FirebaseVision.getInstance().getOnDeviceObjectDetector(options)
2- تشغيل أداة رصد الكائنات
لرصد العناصر وتتبُّعها، أرسِل الصور إلى FirebaseVisionObjectDetector
.
للمثيل processImage()
.
بالنسبة إلى كل إطار من لقطات الفيديو أو الصور في تسلسل، عليك اتّباع الخطوات التالية:
أنشِئ عنصر
FirebaseVisionImage
من صورتك.-
لإنشاء عنصر
FirebaseVisionImage
من كائنmedia.Image
، مثل عند التقاط صورة من كاميرا الجهاز، يُرجى تمرير كائنmedia.Image
تدوير إلىFirebaseVisionImage.fromMediaImage()
.إذا كنت تستخدم CameraX و
OnImageCapturedListener
تحتسب صفوفImageAnalysis.Analyzer
قيمة عرض الإعلانات بالتناوب. لك، لذا ما عليك سوى تحويل الدوران إلى إحدى أدوات تعلّم الآلةROTATION_
ثابت قبل إجراء الطلبFirebaseVisionImage.fromMediaImage()
:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
إذا لم تكن تستخدم مكتبة كاميرا تمنحك تدوير الصورة، يمكنك من دوران الجهاز واتجاه الكاميرا جهاز الاستشعار في الجهاز:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
بعد ذلك، مرِّر الكائن
media.Image
قيمة التدوير إلىFirebaseVisionImage.fromMediaImage()
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- لإنشاء كائن
FirebaseVisionImage
من معرّف موارد منتظم (URI) لملف، مرِّر سياق التطبيق ومعرّف الموارد المنتظم (URI) للملفFirebaseVisionImage.fromFilePath()
يكون ذلك مفيدًا عندما يجب استخدام هدفACTION_GET_CONTENT
لتطلب من المستخدم الاختيار. صورة من تطبيق المعرض الخاص به.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- لإنشاء عنصر
FirebaseVisionImage
منByteBuffer
أو صفيف بايت، احسب الصورة أولاً تدوير كما هو موضح أعلاه لإدخالmedia.Image
.بعد ذلك، يمكنك إنشاء كائن
FirebaseVisionImageMetadata
. يتضمن ارتفاع الصورة وعرضها وتنسيق ترميز الألوان لها وتدوير:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
استخدم المخزن المؤقت أو الصفيفة وكائن البيانات الوصفية لإنشاء كائن
FirebaseVisionImage
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- لإنشاء عنصر
FirebaseVisionImage
من كائنBitmap
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
مستقيمًا، دون الحاجة إلى دوران إضافي.
-
تمرير الصورة إلى طريقة
processImage()
:Java
objectDetector.processImage(image) .addOnSuccessListener( new OnSuccessListener<List<FirebaseVisionObject>>() { @Override public void onSuccess(List<FirebaseVisionObject> detectedObjects) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin+KTX
objectDetector.processImage(image) .addOnSuccessListener { detectedObjects -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
إذا نجح الاتصال إلى
processImage()
، ستظهر قائمة منFirebaseVisionObject
. يتم تمريره إلى المستمع الناجح.يحتوي كل
FirebaseVisionObject
على السمات التالية:مربّع ربط العناصر علامة Rect
تشير إلى موضع العنصر في .الرقم التعريفي للتتبع عدد صحيح يعرّف العنصر عبر الصور. خالية SINGLE_IMAGE_mode. الفئة الفئة التقريبية للعنصر. وإذا لم تتعرّف أداة رصد الكائنات على تمكين التصنيف، يكون هذا FirebaseVisionObject.CATEGORY_UNKNOWN
الثقة قيمة الثقة لتصنيف العنصر. إذا كان الكائن أنّ التصنيف لم يكُن تصنيفًا في أداة الرصد، أو أنّ العنصر مصنفة على أنها غير معروفة، فهذا يعني null
Java
// The list of detected objects contains one item if multiple object detection wasn't enabled. for (FirebaseVisionObject obj : detectedObjects) { Integer id = obj.getTrackingId(); Rect bounds = obj.getBoundingBox(); // If classification was enabled: int category = obj.getClassificationCategory(); Float confidence = obj.getClassificationConfidence(); }
Kotlin+KTX
// The list of detected objects contains one item if multiple object detection wasn't enabled. for (obj in detectedObjects) { val id = obj.trackingId // A number that identifies the object across images val bounds = obj.boundingBox // The object's position in the image // If classification was enabled: val category = obj.classificationCategory val confidence = obj.classificationConfidence }
تحسين سهولة الاستخدام والأداء
لتقديم أفضل تجربة للمستخدم، يُرجى اتّباع الإرشادات التالية في تطبيقك:
- يعتمد نجاح رصد العناصر على التعقيد البصري للكائن. أغراض ذات عدد صغير من الميزات المرئية قد تحتاج إلى شغل جزء أكبر من عن الصورة المراد رصدها. يجب عليك تقديم إرشادات للمستخدمين حول التقاط مدخلاً يتناسب جيدًا مع نوع العناصر التي تريد رصدها.
- عند استخدام التصنيف، إذا كنت تريد رصد الأجسام التي لا تسقط بوضوح في الفئات المعتمدة، وتنفيذ معالجة خاصة للفئات الأخرى.
يمكنك أيضًا الاطّلاع على [تطبيق عرض التصميم المتعدد الأبعاد لمجموعة أدوات تعلّم الآلة][showcase-link]{: .external } و التصميم المتعدد الأبعاد مجموعة أنماط الميزات المستنِدة إلى تعلُّم الآلة:
عند استخدام وضع البث في تطبيق في الوقت الفعلي، اتّبِع الإرشادات التالية وتحقيق أفضل معدلات عرض الإطارات:
يجب عدم استخدام ميزة رصد الكائنات المتعددة في وضع البث، إذ لا تسمح معظم الأجهزة بذلك قادرًا على إنتاج معدلات إطارات مناسبة.
يمكنك إيقاف التصنيف إذا لم تكن بحاجة إليه.
- التحكُّم في المكالمات الواردة إلى أداة الرصد. إذا أصبح إطار فيديو جديد المتاح أثناء تشغيل أداة الكشف، أفلِت الإطار.
- إذا كنت تستخدم ناتج أداة الكشف لتراكب الرسومات على الصورة المدخلة، والحصول أولاً على النتيجة من ML Kit، ثم عرض الصورة وتراكبها في خطوة واحدة. ومن خلال القيام بذلك، يمكنك العرض على سطح الشاشة مرة واحدة فقط لكل إطار إدخال
-
في حال استخدام واجهة برمجة التطبيقات Camera2 API، يمكنك التقاط الصور في تنسيق
ImageFormat.YUV_420_888
إذا كنت تستخدم واجهة برمجة التطبيقات للكاميرا القديمة، يمكنك التقاط الصور في تنسيق
ImageFormat.NV21