تصنيف الصور باستخدام نموذج تم تدريبه على AutoML على منصات Apple

بعد تدريب النموذج الخاص بك باستخدام AutoML Vision Edge، يمكنك استخدامه في تطبيقك لتصنيف الصور.

هناك طريقتان لدمج النماذج التي تم تدريبها من AutoML Vision Edge. يمكنك تجميع النموذج عن طريق نسخ ملفات النموذج إلى مشروع Xcode، أو يمكنك تنزيله ديناميكيًا من Firebase.

خيارات تجميع النموذج
مُضمَّنة في تطبيقك
  • النموذج جزء من الحزمة
  • يتوفّر التصميم على الفور، حتى عندما يكون جهاز Apple غير متصل بالإنترنت.
  • لا حاجة إلى مشروع على Firebase
مستضافة باستخدام Firebase

قبل البدء

  1. أدرِج مكتبات ML Kit في ملف Podfile:

    لتجميع نموذج مع تطبيقك:

    pod 'GoogleMLKit/ImageLabelingCustom'
    

    لتنزيل نموذج ديناميكيًا من Firebase، أضِف LinkFirebase التبعية:

    pod 'GoogleMLKit/ImageLabelingCustom'
    pod 'GoogleMLKit/LinkFirebase'
    
  2. بعد تثبيت حِزم Pods في مشروعك أو تحديثها، افتح مشروع Xcode باستخدام .xcworkspace. تتوافق "حزمة تعلُّم الآلة" مع الإصدار 12.2 من Xcode أو الإصدارات الأحدث.

  3. إذا أردت تنزيل نموذج، تأكَّد من إضافة Firebase إلى مشروع Android، إذا لم يسبق لك إجراء ذلك. ولا يُشترط إجراء ذلك عند تجميع النموذج.

1- تحميل النموذج

ضبط مصدر نموذج على الجهاز

لتجميع النموذج مع تطبيقك:

  1. استخرِج النموذج والبيانات الوصفية له من أرشيف zip الذي نزّلته من وحدة تحكّم Firebase إلى مجلد:

    your_model_directory
      |____dict.txt
      |____manifest.json
      |____model.tflite
    

    يجب أن تكون جميع الملفات الثلاثة في المجلد نفسه. ننصحك باستخدام الملفات كما نزّلتها، بدون إجراء أي تعديلات (بما في ذلك أسماء الملفات).

  2. انسخ المجلد إلى مشروع Xcode، مع الحرص على اختيار إنشاء مراجع للمجلدات عند إجراء ذلك. سيتم تضمين ملف النموذج والبيانات الوصفية في حِزمة التطبيق وإتاحتها في ML Kit.

  3. أنشئ عنصر LocalModel، مع تحديد المسار إلىملف بيان النموذج:

    Swift

    guard let manifestPath = Bundle.main.path(
        forResource: "manifest",
        ofType: "json",
        inDirectory: "your_model_directory"
    ) else { return true }
    let localModel = LocalModel(manifestPath: manifestPath)
    

    Objective-C

    NSString *manifestPath =
        [NSBundle.mainBundle pathForResource:@"manifest"
                                      ofType:@"json"
                                 inDirectory:@"your_model_directory"];
    MLKLocalModel *localModel =
        [[MLKLocalModel alloc] initWithManifestPath:manifestPath];
    

ضبط مصدر نموذج مستضاف على Firebase

لاستخدام النموذج المستضاف عن بُعد، أنشئ عنصرًا من النوع CustomRemoteModel ، مع تحديد الاسم الذي منحته للنموذج عند نشره:

Swift

// Initialize the model source with the name you assigned in
// the Firebase console.
let remoteModelSource = FirebaseModelSource(name: "your_remote_model")
let remoteModel = CustomRemoteModel(remoteModelSource: remoteModelSource)

Objective-C

// Initialize the model source with the name you assigned in
// the Firebase console.
MLKFirebaseModelSource *firebaseModelSource =
    [[MLKFirebaseModelSource alloc] initWithName:@"your_remote_model"];
MLKCustomRemoteModel *remoteModel =
    [[MLKCustomRemoteModel alloc] initWithRemoteModelSource:firebaseModelSource];

بعد ذلك، ابدأ مهمة تنزيل النموذج، مع تحديد الشروط التي تريد السماح بالتنزيل بموجبها. إذا لم يكن النموذج متوفّرًا على الجهاز أو إذا كان هناك إصدار أحدث من النموذج، ستنزِّل المهمة النموذج بشكل غير متزامن من Firebase:

Swift

let downloadConditions = ModelDownloadConditions(
  allowsCellularAccess: true,
  allowsBackgroundDownloading: true
)

let downloadProgress = ModelManager.modelManager().download(
  remoteModel,
  conditions: downloadConditions
)

Objective-C

MLKModelDownloadConditions *downloadConditions =
    [[MLKModelDownloadConditions alloc] initWithAllowsCellularAccess:YES
                                         allowsBackgroundDownloading:YES];

NSProgress *downloadProgress =
    [[MLKModelManager modelManager] downloadRemoteModel:remoteModel
                                             conditions:downloadConditions];

تبدأ العديد من التطبيقات مهمة التنزيل في رمز الإعداد الخاص بها، ولكن يمكنك إجراء ذلك في أي وقت قبل أن تحتاج إلى استخدام النموذج.

إنشاء أداة تصنيف الصور من النموذج

بعد ضبط مصادر النماذج، أنشئ عنصرًا من ImageLabeler من أحدها.

إذا كان لديك نموذج مجمّع محليًا فقط، ما عليك سوى إنشاء أداة تصنيف من عنصر LocalModel وضبط الحدّ الأدنى لنتيجة الوثوق الذي تريد فرضه (راجِع تقييم النموذج):

Swift

let options = CustomImageLabelerOptions(localModel: localModel)
options.confidenceThreshold = NSNumber(value: 0.0)  // Evaluate your model in the Cloud console
                                                    // to determine an appropriate value.
let imageLabeler = ImageLabeler.imageLabeler(options)

Objective-C

CustomImageLabelerOptions *options =
    [[CustomImageLabelerOptions alloc] initWithLocalModel:localModel];
options.confidenceThreshold = @(0.0f);  // Evaluate your model in the Cloud console
                                        // to determine an appropriate value.
MLKImageLabeler *imageLabeler =
    [MLKImageLabeler imageLabelerWithOptions:options];

إذا كان لديك نموذج مستضاف عن بُعد، عليك التأكّد من أنّه قد تم تنزيله قبل تشغيله. يمكنك التحقّق من حالة مهمة تنزيل النموذج باستخدام طريقة isModelDownloaded(remoteModel:) لمدير النموذج.

على الرغم من أنّه عليك تأكيد ذلك فقط قبل تشغيل أداة وضع العلامات، إذا كان لديك نموذج مستضاف عن بُعد ونموذج مجمّع محليًا، قد يكون من المفيد إجراء هذا التحقّق عند إنشاء مثيل ImageLabeler: أنشئ أداة وضع العلامات من النموذج عن بُعد إذا تم تنزيله، ومن النموذج المحلي بخلاف ذلك.

Swift

var options: CustomImageLabelerOptions
if (ModelManager.modelManager().isModelDownloaded(remoteModel)) {
  options = CustomImageLabelerOptions(remoteModel: remoteModel)
} else {
  options = CustomImageLabelerOptions(localModel: localModel)
}
options.confidenceThreshold = NSNumber(value: 0.0)  // Evaluate your model in the Firebase console
                                                    // to determine an appropriate value.
let imageLabeler = ImageLabeler.imageLabeler(options: options)

Objective-C

MLKCustomImageLabelerOptions *options;
if ([[MLKModelManager modelManager] isModelDownloaded:remoteModel]) {
  options = [[MLKCustomImageLabelerOptions alloc] initWithRemoteModel:remoteModel];
} else {
  options = [[MLKCustomImageLabelerOptions alloc] initWithLocalModel:localModel];
}
options.confidenceThreshold = @(0.0f);  // Evaluate your model in the Firebase console
                                        // to determine an appropriate value.
MLKImageLabeler *imageLabeler =
    [MLKImageLabeler imageLabelerWithOptions:options];

إذا كان لديك نموذج مستضاف عن بُعد فقط، عليك إيقاف وظائفه المتعلقة بالنموذج، مثل إخفاء جزء من واجهة المستخدم أو جعله يظهر باللون الرمادي، إلى أن يتم تأكيد تنزيل النموذج.

يمكنك الحصول على حالة تنزيل النموذج من خلال إرفاق مراقبين بتطبيق "مركز الإشعارات" التلقائي. احرص على استخدام إشارة ضعيفة إلى self في ملف الملاحظ، لأنّ عمليات التنزيل قد تستغرق بعض الوقت، ويمكن ملف الملاحظ تحريره بحلول وقت انتهاء التنزيل. على سبيل المثال:

Swift

NotificationCenter.default.addObserver(
    forName: .mlkitMLModelDownloadDidSucceed,
    object: nil,
    queue: nil
) { [weak self] notification in
    guard let strongSelf = self,
        let userInfo = notification.userInfo,
        let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
            as? RemoteModel,
        model.name == "your_remote_model"
        else { return }
    // The model was downloaded and is available on the device
}

NotificationCenter.default.addObserver(
    forName: .mlkitMLModelDownloadDidFail,
    object: nil,
    queue: nil
) { [weak self] notification in
    guard let strongSelf = self,
        let userInfo = notification.userInfo,
        let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
            as? RemoteModel
        else { return }
    let error = userInfo[ModelDownloadUserInfoKey.error.rawValue]
    // ...
}

Objective-C

__weak typeof(self) weakSelf = self;

[NSNotificationCenter.defaultCenter
    addObserverForName:MLKModelDownloadDidSucceedNotification
                object:nil
                 queue:nil
            usingBlock:^(NSNotification *_Nonnull note) {
              if (weakSelf == nil | note.userInfo == nil) {
                return;
              }
              __strong typeof(self) strongSelf = weakSelf;

              MLKRemoteModel *model = note.userInfo[MLKModelDownloadUserInfoKeyRemoteModel];
              if ([model.name isEqualToString:@"your_remote_model"]) {
                // The model was downloaded and is available on the device
              }
            }];

[NSNotificationCenter.defaultCenter
    addObserverForName:MLKModelDownloadDidFailNotification
                object:nil
                 queue:nil
            usingBlock:^(NSNotification *_Nonnull note) {
              if (weakSelf == nil | note.userInfo == nil) {
                return;
              }
              __strong typeof(self) strongSelf = weakSelf;

              NSError *error = note.userInfo[MLKModelDownloadUserInfoKeyError];
            }];

2- تجهيز صورة الإدخال

أنشئ عنصر VisionImage باستخدام UIImage أو CMSampleBufferRef.

إذا كنت تستخدم UIImage، يُرجى اتّباع الخطوات التالية:

  • أنشئ عنصر VisionImage باستخدام UIImage. احرص على تحديد .orientation الصحيح.

    Swift

    let image = VisionImage(image: uiImage)
    visionImage.orientation = image.imageOrientation

    Objective-C

    MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image];
    visionImage.orientation = image.imageOrientation;

إذا كنت تستخدم CMSampleBufferRef، اتّبِع الخطوات التالية:

  • حدِّد اتجاه بيانات الصورة المضمَّنة في المخزن المؤقت CMSampleBufferRef.

    للحصول على اتجاه الصورة:

    Swift

    func imageOrientation(
      deviceOrientation: UIDeviceOrientation,
      cameraPosition: AVCaptureDevice.Position
    ) -> UIImage.Orientation {
      switch deviceOrientation {
      case .portrait:
        return cameraPosition == .front ? .leftMirrored : .right
      case .landscapeLeft:
        return cameraPosition == .front ? .downMirrored : .up
      case .portraitUpsideDown:
        return cameraPosition == .front ? .rightMirrored : .left
      case .landscapeRight:
        return cameraPosition == .front ? .upMirrored : .down
      case .faceDown, .faceUp, .unknown:
        return .up
      }
    }
          

    Objective-C

    - (UIImageOrientation)
      imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation
                             cameraPosition:(AVCaptureDevicePosition)cameraPosition {
      switch (deviceOrientation) {
        case UIDeviceOrientationPortrait:
          return position == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored
                                                          : UIImageOrientationRight;
    
        case UIDeviceOrientationLandscapeLeft:
          return position == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored
                                                          : UIImageOrientationUp;
        case UIDeviceOrientationPortraitUpsideDown:
          return position == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored
                                                          : UIImageOrientationLeft;
        case UIDeviceOrientationLandscapeRight:
          return position == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored
                                                          : UIImageOrientationDown;
        case UIDeviceOrientationUnknown:
        case UIDeviceOrientationFaceUp:
        case UIDeviceOrientationFaceDown:
          return UIImageOrientationUp;
      }
    }
          
  • أنشئ كائن VisionImage باستخدام كائن CMSampleBufferRef واتجاهه:

    Swift

    let image = VisionImage(buffer: sampleBuffer)
    image.orientation = imageOrientation(
      deviceOrientation: UIDevice.current.orientation,
      cameraPosition: cameraPosition)

    Objective-C

     MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer];
     image.orientation =
       [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation
                                    cameraPosition:cameraPosition];

3- تشغيل أداة تصنيف الصور

بشكل غير متزامن:

Swift

imageLabeler.process(image) { labels, error in
    guard error == nil, let labels = labels, !labels.isEmpty else {
        // Handle the error.
        return
    }
    // Show results.
}

Objective-C

[imageLabeler
    processImage:image
      completion:^(NSArray<MLKImageLabel *> *_Nullable labels,
                   NSError *_Nullable error) {
        if (label.count == 0) {
            // Handle the error.
            return;
        }
        // Show results.
     }];

بشكل متزامن:

Swift

var labels: [ImageLabel]
do {
    labels = try imageLabeler.results(in: image)
} catch let error {
    // Handle the error.
    return
}
// Show results.

Objective-C

NSError *error;
NSArray<MLKImageLabel *> *labels =
    [imageLabeler resultsInImage:image error:&error];
// Show results or handle the error.

4. الحصول على معلومات عن الأجسام المصنَّفة

إذا نجحت عملية تصنيف الصور، ستُرجع مصفوفة من ImageLabel. يمثّل كل رمز ImageLabel شيئًا تم وضع تصنيف له في الصورة. يمكنك الحصول على الوصف النصي لكل تصنيف (إذا كان متاحًا في البيانات الوصفية لملف نموذج TensorFlow Lite) ونتيجة الثقة والفهرس. على سبيل المثال:

Swift

for label in labels {
  let labelText = label.text
  let confidence = label.confidence
  let index = label.index
}

Objective-C

for (MLKImageLabel *label in labels) {
  NSString *labelText = label.text;
  float confidence = label.confidence;
  NSInteger index = label.index;
}

نصائح لتحسين الأداء في الوقت الفعلي

إذا كنت تريد تصنيف الصور في تطبيق يعمل في الوقت الفعلي، اتّبِع هذه الإرشادات لتحقيق أفضل معدّلات عرض اللقطات:

  • الحد من عدد المكالمات إلى الكاشف إذا أصبح إطار فيديو جديد متاحًا أثناء تشغيل أداة الرصد، أفلِت الإطار.
  • إذا كنت تستخدم ناتج أداة الرصد لتركيب الرسومات على الصورة التي تم إدخالها، عليك أولاً الحصول على النتيجة، ثم عرض الصورة والمحتوى الذي يظهر على سطح الفيديو في خطوة واحدة. وبذلك، يتم عرض المحتوى على سطح العرض مرّة واحدة فقط لكل إطار إدخال. للاطّلاع على مثال، يمكنك الاطّلاع على الفئتَين previewOverlayView وFIRDetectionOverlayView في نموذج تطبيق العرض