หากต้องการฝึกโมเดลการติดป้ายกำกับรูปภาพ ให้ส่งชุดรูปภาพและป้ายกำกับที่เกี่ยวข้องให้ AutoML Vision Edge AutoML Vision Edge ใช้ชุดข้อมูลนี้เพื่อฝึกโมเดลใหม่ในระบบคลาวด์ ซึ่งคุณนำไปใช้ติดป้ายกำกับรูปภาพในอุปกรณ์ในแอปได้ (ดูข้อมูลทั่วไปเกี่ยวกับฟีเจอร์นี้ในภาพรวม)
AutoML Vision Edge เป็นบริการของ Google Cloud การใช้งานบริการอยู่ภายใต้ข้อตกลงการอนุญาตให้ใช้สิทธิของ Google Cloud Platform และข้อกำหนดเฉพาะของบริการ รวมถึงจะมีการเรียกเก็บเงินตามนั้น ดูข้อมูลการเรียกเก็บเงินได้ที่หน้าราคาของ AutoML
ก่อนเริ่มต้น
หากยังไม่มีโปรเจ็กต์ Firebase หรือ Google Cloud ให้สร้างโปรเจ็กต์ในคอนโซล Firebase
ทำความคุ้นเคยกับหลักเกณฑ์ที่แสดงในคู่มือ ML แบบครอบคลุม - AutoML
หากต้องการลองใช้ AutoML Vision Edge เท่านั้นและไม่มีข้อมูลการฝึกของคุณเอง ให้ดาวน์โหลดชุดข้อมูลตัวอย่าง เช่น ชุดข้อมูลต่อไปนี้
- ชุดข้อมูลตัวอย่างรูปภาพดอกไม้อย่างเป็นทางการของ TensorFlow
- ชุดข้อมูลตัวอักษรภาษามือแบบอเมริกัน (ASL)
คุณค้นหาชุดข้อมูลเพิ่มเติมที่โฮสต์ได้ใน Kaggle
1. รวบรวมข้อมูลการฝึก
ก่อนอื่นคุณต้องรวบรวมชุดข้อมูลการฝึกของรูปภาพที่ติดป้ายกำกับ โปรดคำนึงถึงหลักเกณฑ์ต่อไปนี้
รูปภาพต้องอยู่ในรูปแบบ JPEG, PNG, GIF, BMP และ ICO
แต่ละภาพต้องมีขนาดไม่เกิน 30 MB โปรดทราบว่า AutoML Vision Edge จะลดขนาดรูปภาพส่วนใหญ่ในระหว่างการประมวลผลก่อน ดังนั้นโดยทั่วไปแล้วการให้รูปภาพที่มีความละเอียดสูงมากจึงไม่มีประโยชน์ในแง่ความแม่นยำ
ใส่ตัวอย่างป้ายกำกับแต่ละป้ายอย่างน้อย 10 ตัวอย่างและควรเป็น 100 ตัวอย่างขึ้นไป
ใส่ภาพจากหลายมุม ความละเอียด และพื้นหลังสำหรับป้ายกำกับแต่ละรายการ
ข้อมูลการฝึกควรใกล้เคียงกับข้อมูลที่จะทำการคาดการณ์มากที่สุด เช่น หาก Use Case ของคุณเกี่ยวข้องกับรูปภาพที่เบลอและมีความละเอียดต่ำ (เช่น จากกล้องรักษาความปลอดภัย) ข้อมูลการฝึกอบรมควรประกอบด้วยรูปภาพที่เบลอและมีความละเอียดต่ำ
โมเดลที่ AutoML Vision Edge สร้างขึ้นได้รับการเพิ่มประสิทธิภาพสำหรับรูปภาพวัตถุในโลกแห่งความเป็นจริง และอาจทำงานได้ไม่ดีในการเอ็กซเรย์ การวาดด้วยมือ เอกสารที่สแกน ใบเสร็จ และอื่นๆ
นอกจากนี้ โดยทั่วไปแล้ว โมเดลไม่สามารถคาดการณ์ป้ายกำกับที่มนุษย์ไม่สามารถกำหนดได้ ดังนั้น หากมนุษย์ไม่สามารถกําหนดป้ายกำกับโดยดูรูปภาพเป็นเวลา 1-2 วินาที โมเดลก็อาจฝึกให้ทําเช่นนั้นไม่ได้เช่นกัน
เมื่อเตรียมรูปภาพสำหรับการฝึกอบรมแล้ว ให้เตรียมรูปภาพเหล่านั้นเพื่อนำเข้าไปยัง Firebase คุณมี 3 ตัวเลือกดังนี้
ตัวเลือกที่ 1: ไฟล์ ZIP ที่มีโครงสร้าง
จัดระเบียบรูปภาพที่ใช้ฝึกเป็นไดเรกทอรี โดยตั้งชื่อแต่ละไดเรกทอรีตามป้ายกำกับและใส่รูปภาพที่เป็นตัวอย่างของป้ายกำกับนั้น จากนั้นบีบอัดโครงสร้างไดเรกทอรีเป็นไฟล์เก็บถาวรแบบ Zip
ชื่อไดเรกทอรีในไฟล์ ZIP นี้มีความยาวได้สูงสุด 32 อักขระ ASCII และต้องมีอักขระที่เป็นตัวอักษรและตัวเลขคละกันและขีดล่าง (_
) เท่านั้น
เช่น
my_training_data.zip |____accordion | |____001.jpg | |____002.jpg | |____003.jpg |____bass_guitar | |____hofner.gif | |____p-bass.png |____clavier |____well-tempered.jpg |____well-tempered (1).jpg |____well-tempered (2).jpg
ตัวเลือกที่ 2: Cloud Storage ที่มีดัชนี CSV
อัปโหลดรูปภาพสำหรับการฝึกไปยัง Google Cloud Storage และเตรียมไฟล์ CSV ที่แสดง URL ของรูปภาพแต่ละรูป และป้ายกำกับที่ถูกต้องของรูปภาพแต่ละรูป (ไม่บังคับ) ตัวเลือกนี้มีประโยชน์เมื่อใช้ชุดข้อมูลขนาดใหญ่มาก
เช่น อัปโหลดรูปภาพไปยัง Cloud Storage และเตรียมไฟล์ CSV ตามขั้นตอนต่อไปนี้
gs://your-training-data-bucket/001.jpg,accordion gs://your-training-data-bucket/002.jpg,accordion gs://your-training-data-bucket/003.jpg,accordion gs://your-training-data-bucket/hofner.gif,bass_guitar gs://your-training-data-bucket/p-bass.png,bass_guitar gs://your-training-data-bucket/well-tempered.jpg,clavier gs://your-training-data-bucket/well-tempered%20(1).jpg,clavier gs://your-training-data-bucket/well-tempered%20(2).jpg,clavier
รูปภาพต้องจัดเก็บในที่เก็บข้อมูลซึ่งเป็นส่วนหนึ่งของโปรเจ็กต์ Google Cloud ที่เกี่ยวข้องของโปรเจ็กต์ Firebase
ดูข้อมูลเพิ่มเติมเกี่ยวกับการเตรียมไฟล์ CSV ได้ที่การเตรียมข้อมูลการฝึกในเอกสารประกอบของ Cloud AutoML Vision
ตัวเลือกที่ 3: รูปภาพที่ไม่มีป้ายกำกับ
ติดป้ายกำกับรูปภาพการฝึกในคอนโซล Firebase หลังจากที่คุณอัปโหลดทีละรูปหรือในไฟล์ ZIP ที่ไม่มีโครงสร้าง ดูขั้นตอนถัดไป
2. ฝึกโมเดล
จากนั้น ฝึกโมเดลโดยใช้รูปภาพของคุณ ดังนี้
เปิดหน้าชุดข้อมูล Vision ในคอนโซล Google Cloud เลือกโปรเจ็กต์เมื่อได้รับแจ้ง
คลิกชุดข้อมูลใหม่ ตั้งชื่อชุดข้อมูล เลือกประเภทโมเดลที่ต้องการฝึก แล้วคลิกสร้างชุดข้อมูล
ในแท็บนําเข้าของชุดข้อมูล ให้อัปโหลดไฟล์ ZIP ของรูปภาพที่ใช้ฝึกหรือไฟล์ CSV ที่มีตําแหน่ง Cloud Storage ที่คุณอัปโหลดรูปภาพ โปรดดูหัวข้อรวบรวมข้อมูลการฝึก
หลังจากการนําเข้าเสร็จสิ้นแล้ว ให้ใช้แท็บรูปภาพเพื่อยืนยันข้อมูลการฝึกและติดป้ายกำกับรูปภาพที่ไม่มีป้ายกำกับ
ในแท็บฝึก ให้คลิกเริ่มฝึก
ตั้งชื่อโมเดลและเลือกประเภทโมเดล Edge
กําหนดการตั้งค่าการฝึกต่อไปนี้ ซึ่งจะควบคุมประสิทธิภาพของโมเดลที่สร้างขึ้น
เพิ่มประสิทธิภาพโมเดลสําหรับ... การกำหนดค่าโมเดลที่จะใช้ คุณจะฝึกโมเดลที่เร็วขึ้นหรือเล็กลงได้เมื่อเวลาในการตอบสนองต่ำหรือแพ็กเกจขนาดเล็กมีความสำคัญ หรือโมเดลที่ช้าและใหญ่กว่าเมื่อความแม่นยำเป็นสิ่งสำคัญที่สุด งบประมาณชั่วโมงของโหนด เวลาสูงสุด (เป็นชั่วโมงการประมวลผล) ที่ใช้ฝึกโมเดล โดยทั่วไปแล้ว การฝึกอบรมนานขึ้นจะทำให้โมเดลแม่นยำยิ่งขึ้น
โปรดทราบว่าการฝึกอาจเสร็จสิ้นภายในเวลาที่กำหนดไว้น้อยกว่านี้หากระบบพิจารณาว่าโมเดลได้รับการเพิ่มประสิทธิภาพแล้ว และการฝึกเพิ่มเติมจะไม่เพิ่มความแม่นยำ ระบบจะเรียกเก็บเงินจากคุณเฉพาะชั่วโมงที่ใช้จริงเท่านั้น
เวลาการฝึกตามปกติ ชุดขนาดเล็กมาก 1 ชั่วโมง รูปภาพ 500 รูป 2 ชั่วโมง รูปภาพ 1,000 รูป 3 ชั่วโมง รูปภาพ 5,000 รูป 6 ชั่วโมง รูปภาพ 10,000 รูป 7 ชั่วโมง รูปภาพ 50,000 รูป 11 ชั่วโมง รูปภาพ 100,000 รูป 13 ชั่วโมง รูปภาพ 1,000,000 รูป 18 ชั่วโมง
3. ประเมินรูปแบบการระบุแหล่งที่มา
เมื่อการฝึกเสร็จสิ้นแล้ว คุณสามารถคลิกแท็บประเมินเพื่อดูเมตริกประสิทธิภาพของโมเดล
การใช้ที่สําคัญอย่างหนึ่งของหน้านี้คือการกำหนดเกณฑ์ความเชื่อมั่นที่เหมาะกับโมเดลของคุณมากที่สุด เกณฑ์ความเชื่อมั่นคือความเชื่อมั่นขั้นต่ำที่โมเดลต้องมีจึงจะกำหนดป้ายกำกับให้รูปภาพได้ หากเลื่อนแถบเลื่อนเกณฑ์ความเชื่อมั่น คุณจะดูได้ว่าเกณฑ์ต่างๆ มีผลต่อประสิทธิภาพของโมเดลอย่างไร ระบบจะวัดประสิทธิภาพของโมเดลโดยใช้เมตริก 2 รายการ ได้แก่ ความแม่นยำและความถี่ในการพบ
ในบริบทของการจัดประเภทรูปภาพ ความแม่นยำคืออัตราส่วนของจำนวนรูปภาพที่ติดป้ายกำกับอย่างถูกต้องต่อจำนวนรูปภาพที่โมเดลติดป้ายกำกับตามเกณฑ์ที่เลือก เมื่อโมเดลมีความแม่นยำสูง ก็จะกําหนดป้ายกํากับอย่างไม่ถูกต้องน้อยลง (ผลบวกลวงน้อยลง)
การเรียกคืนคืออัตราส่วนของจํานวนรูปภาพที่ติดป้ายกำกับอย่างถูกต้องต่อจํานวนรูปภาพที่มีเนื้อหาที่โมเดลควรติดป้ายกำกับได้ เมื่อโมเดลมีความไวสูง ก็จะกำหนดป้ายกำกับได้น้อยลง (ผลลบลวงน้อยลง)
การเพิ่มประสิทธิภาพเพื่อเพิ่มความแม่นยำหรือความจําจะขึ้นอยู่กับกรณีการใช้งานของคุณ ดูข้อมูลเพิ่มเติมได้ที่คู่มือสําหรับผู้เริ่มต้นใช้งาน AutoML Vision และคู่มือ ML แบบครอบคลุม - AutoML
เมื่อพบเกณฑ์ความเชื่อมั่นที่สร้างเมตริกที่ยอมรับได้ ให้จดบันทึกไว้ เนื่องจากคุณจะใช้เกณฑ์ความเชื่อมั่นในการกําหนดค่าโมเดลในแอป (คุณใช้เครื่องมือนี้ได้ทุกเมื่อเพื่อรับค่าเกณฑ์ที่เหมาะสม)
4. เผยแพร่หรือดาวน์โหลดโมเดล
หากพอใจกับประสิทธิภาพของโมเดลและต้องการนำไปใช้ในแอป คุณมี 3 ตัวเลือกให้เลือกผสมผสานกัน ได้แก่ ติดตั้งใช้งานโมเดลสำหรับการคาดการณ์ออนไลน์ เผยแพร่โมเดลไปยัง Firebase หรือดาวน์โหลดโมเดลและรวมไว้ในแอป
ทำให้โมเดลใช้งานได้
ในแท็บทดสอบและใช้งานของชุดข้อมูล คุณสามารถทำให้โมเดลใช้งานได้สำหรับการคาดคะเนออนไลน์ ซึ่งจะเรียกใช้โมเดลในระบบคลาวด์ ตัวเลือกนี้อยู่ในเอกสาร Cloud AutoML เอกสารในเว็บไซต์นี้จะพูดถึงอีก 2 ตัวเลือกที่เหลือ
เผยแพร่โมเดล
การเผยแพร่โมเดลไปยัง Firebase จะช่วยให้คุณอัปเดตโมเดลได้โดยไม่ต้องเผยแพร่แอปเวอร์ชันใหม่ และสามารถใช้ Remote Config และ A/B Testing เพื่อแสดงโมเดลที่แตกต่างกันให้กับผู้ใช้แต่ละกลุ่มแบบไดนามิก
หากเลือกที่จะระบุเฉพาะโมเดลโดยโฮสต์กับ Firebase และไม่ได้รวมไว้ในแอป คุณจะลดขนาดการดาวน์โหลดเริ่มต้นของแอปได้ แต่โปรดทราบว่าหากไม่ได้รวมโมเดลไว้ในแอป ฟังก์ชันการทำงานที่เกี่ยวข้องกับโมเดลจะไม่พร้อมใช้งานจนกว่าแอปจะดาวน์โหลดโมเดลเป็นครั้งแรก
หากต้องการเผยแพร่โมเดล คุณจะใช้วิธีใดวิธีหนึ่งต่อไปนี้ได้
- ดาวน์โหลดโมเดล TF Lite จากหน้าทดสอบและใช้ของชุดข้อมูลในคอนโซล Google Cloud จากนั้นอัปโหลดโมเดลในหน้าโมเดลที่กำหนดเองของคอนโซล Firebase ซึ่งมักเป็นวิธีที่ง่ายที่สุดในการเผยแพร่โมเดลเดียว
- เผยแพร่โมเดลจากโปรเจ็กต์ Google Cloud ไปยัง Firebase โดยตรงโดยใช้ Admin SDK คุณสามารถใช้วิธีนี้เพื่อเผยแพร่หลายรุ่นพร้อมกัน หรือเพื่อช่วยสร้างไปป์ไลน์การเผยแพร่อัตโนมัติ
วิธีเผยแพร่โมเดลด้วย Model Management API ของ Admin SDK
เผยแพร่โมเดล
คุณจะต้องระบุตัวระบุทรัพยากรของโมเดล ซึ่งเป็นสตริงที่มีลักษณะดังตัวอย่างต่อไปนี้
projects/PROJECT_NUMBER/locations/us-central1/models/MODEL_ID
PROJECT_NUMBER
หมายเลขโปรเจ็กต์ของที่เก็บข้อมูล Cloud Storage ที่มีโมเดล ซึ่งอาจเป็นโปรเจ็กต์ Firebase ของคุณหรือโปรเจ็กต์ Google Cloud อื่น คุณดูค่านี้ได้ในหน้าการตั้งค่าของคอนโซล Firebase หรือหน้าแดชบอร์ดคอนโซล Google Cloud MODEL_ID
รหัสของโมเดล ซึ่งได้มาจาก AutoML Cloud API Python
# First, import and initialize the SDK. # Get a reference to the AutoML model source = ml.TFLiteAutoMlSource('projects/{}/locations/us-central1/models/{}'.format( # See above for information on these values. project_number, model_id )) # Create the model object tflite_format = ml.TFLiteFormat(model_source=source) model = ml.Model( display_name="example_model", # This is the name you will use from your app to load the model. tags=["examples"], # Optional tags for easier management. model_format=tflite_format) # Add the model to your Firebase project and publish it new_model = ml.create_model(model) new_model.wait_for_unlocked() ml.publish_model(new_model.model_id)
Node.js
// First, import and initialize the SDK. (async () => { // Get a reference to the AutoML model. See above for information on these // values. const automlModel = `projects/${projectNumber}/locations/us-central1/models/${modelId}`; // Create the model object and add the model to your Firebase project. const model = await ml.createModel({ displayName: 'example_model', // This is the name you use from your app to load the model. tags: ['examples'], // Optional tags for easier management. tfliteModel: { automlModel: automlModel }, }); // Wait for the model to be ready. await model.waitForUnlocked(); // Publish the model. await ml.publishModel(model.modelId); process.exit(); })().catch(console.error);
ดาวน์โหลดและรวมโมเดลกับแอปของคุณ
การรวมโมเดลไว้ในแอปช่วยให้มั่นใจได้ว่าฟีเจอร์ ML ของแอปจะยังคงทํางานได้เมื่อโมเดลที่โฮสต์ใน Firebase ไม่พร้อมใช้งาน
หากคุณทั้งเผยแพร่โมเดลและรวมอยู่กับแอป แอปก็จะใช้เวอร์ชันล่าสุดที่มีอยู่
หากต้องการดาวน์โหลดโมเดล ให้คลิก TF Lite ในหน้าทดสอบและใช้ของชุดข้อมูล
ขั้นตอนถัดไป
เมื่อเผยแพร่หรือดาวน์โหลดโมเดลแล้ว ให้ดูวิธีใช้โมเดลในแอป iOS+ และ Android