Firebase/MLModelInterpreter
库的 0.20.0 版引入了新的 getLatestModelFilePath()
方法,该方法可获取设备上自定义模型的位置。您可以使用此方法直接实例化 TensorFlow Lite Interpreter
对象,该对象可用于取代 Firebase 的 ModelInterpreter
封装容器。
今后,我们推荐您采用这种方法。由于 TensorFlow Lite 解释器版本不再与 Firebase 库版本结合使用,因此您可以根据需要更灵活地升级到新版 TensorFlow Lite,或者更轻松地使用自定义 TensorFlow Lite 构建。
本页面介绍了如何从使用 ModelInterpreter
迁移到 TensorFlow Lite Interpreter
。
1. 更新项目依赖项
更新项目的 Podfile,以包含 Firebase/MLModelInterpreter
库的 0.20.0 版(或更高版本)以及 TensorFlow Lite 库:
旧版
pod 'Firebase/MLModelInterpreter', '0.19.0'
pod 'Firebase/MLModelInterpreter', '0.19.0'
新版
pod 'Firebase/MLModelInterpreter', '~> 0.20.0'
pod 'TensorFlowLiteSwift'
pod 'Firebase/MLModelInterpreter', '~> 0.20.0'
pod 'TensorFlowLiteObjC'
2. 创建 TensorFlow Lite 解释器而不是 Firebase ModelInterpreter
使用 getLatestModelFilePath()
获取设备上模型的位置并使用它创建 TensorFlow Lite Interpreter
,而不是创建 Firebase ModelInterpreter
。
旧版
let remoteModel = CustomRemoteModel(
name: "your_remote_model" // The name you assigned in the Firebase console.
)
interpreter = ModelInterpreter.modelInterpreter(remoteModel: remoteModel)
// Initialize using the name you assigned in the Firebase console.
FIRCustomRemoteModel *remoteModel =
[[FIRCustomRemoteModel alloc] initWithName:@"your_remote_model"];
interpreter = [FIRModelInterpreter modelInterpreterForRemoteModel:remoteModel];
新版
let remoteModel = CustomRemoteModel(
name: "your_remote_model" // The name you assigned in the Firebase console.
)
ModelManager.modelManager().getLatestModelFilePath(remoteModel) { (remoteModelPath, error) in
guard error == nil, let remoteModelPath = remoteModelPath else { return }
do {
interpreter = try Interpreter(modelPath: remoteModelPath)
} catch {
// Error?
}
}
FIRCustomRemoteModel *remoteModel =
[[FIRCustomRemoteModel alloc] initWithName:@"your_remote_model"];
[[FIRModelManager modelManager] getLatestModelFilePath:remoteModel
completion:^(NSString * _Nullable filePath,
NSError * _Nullable error) {
if (error != nil || filePath == nil) { return; }
NSError *tfError = nil;
interpreter = [[TFLInterpreter alloc] initWithModelPath:filePath error:&tfError];
}];
3. 更新输入和输出准备代码
通过 ModelInterpreter
,您可以在运行解释器时将 ModelInputOutputOptions
对象传递给解释器,从而指定模型的输入和输出形状。
对于 TensorFlow Lite 解释器,您需要改为调用 allocateTensors()
以给模型的输入和输出分配空间,然后将输入数据复制到输入张量。
例如,如果模型的输入形状为 [1 224 224 3] float
值且输出形状为 [1 1000] float
值,请进行以下更改:
旧版
let ioOptions = ModelInputOutputOptions()
do {
try ioOptions.setInputFormat(
index: 0,
type: .float32,
dimensions: [1, 224, 224, 3]
)
try ioOptions.setOutputFormat(
index: 0,
type: .float32,
dimensions: [1, 1000]
)
} catch let error as NSError {
print("Failed to set input or output format with error: \(error.localizedDescription)")
}
let inputs = ModelInputs()
do {
let inputData = Data()
// Then populate with input data.
try inputs.addInput(inputData)
} catch let error {
print("Failed to add input: \(error)")
}
interpreter.run(inputs: inputs, options: ioOptions) { outputs, error in
guard error == nil, let outputs = outputs else { return }
// Process outputs
// ...
}
FIRModelInputOutputOptions *ioOptions = [[FIRModelInputOutputOptions alloc] init];
NSError *error;
[ioOptions setInputFormatForIndex:0
type:FIRModelElementTypeFloat32
dimensions:@[@1, @224, @224, @3]
error:&error];
if (error != nil) { return; }
[ioOptions setOutputFormatForIndex:0
type:FIRModelElementTypeFloat32
dimensions:@[@1, @1000]
error:&error];
if (error != nil) { return; }
FIRModelInputs *inputs = [[FIRModelInputs alloc] init];
NSMutableData *inputData = [[NSMutableData alloc] initWithCapacity:0];
// Then populate with input data.
[inputs addInput:inputData error:&error];
if (error != nil) { return; }
[interpreter runWithInputs:inputs
options:ioOptions
completion:^(FIRModelOutputs * _Nullable outputs,
NSError * _Nullable error) {
if (error != nil || outputs == nil) {
return;
}
// Process outputs
// ...
}];
新版
do {
try interpreter.allocateTensors()
let inputData = Data()
// Then populate with input data.
try interpreter.copy(inputData, toInputAt: 0)
try interpreter.invoke()
} catch let err {
print(err.localizedDescription)
}
NSError *error = nil;
[interpreter allocateTensorsWithError:&error];
if (error != nil) { return; }
TFLTensor *input = [interpreter inputTensorAtIndex:0 error:&error];
if (error != nil) { return; }
NSMutableData *inputData = [[NSMutableData alloc] initWithCapacity:0];
// Then populate with input data.
[input copyData:inputData error:&error];
if (error != nil) { return; }
[interpreter invokeWithError:&error];
if (error != nil) { return; }
4. 更新输出处理代码
最后,不要使用 ModelOutputs
对象的 output()
方法获取模型的输出,而应该获取解释器的输出张量并将其数据转换为对您的使用场景而言很方便的任何结构。
例如,如果您要执行分类,则可以进行如下更改:
旧版
let output = try? outputs.output(index: 0) as? [[NSNumber]]
let probabilities = output?[0]
guard let labelPath = Bundle.main.path(
forResource: "custom_labels",
ofType: "txt"
) else { return }
let fileContents = try? String(contentsOfFile: labelPath)
guard let labels = fileContents?.components(separatedBy: "\n") else { return }
for i in 0 ..< labels.count {
if let probability = probabilities?[i] {
print("\(labels[i]): \(probability)")
}
}
// Get first and only output of inference with a batch size of 1
NSError *error;
NSArray *probabilites = [outputs outputAtIndex:0 error:&error][0];
if (error != nil) { return; }
NSString *labelPath = [NSBundle.mainBundle pathForResource:@"retrained_labels"
ofType:@"txt"];
NSString *fileContents = [NSString stringWithContentsOfFile:labelPath
encoding:NSUTF8StringEncoding
error:&error];
if (error != nil || fileContents == NULL) { return; }
NSArray<NSString *> *labels = [fileContents componentsSeparatedByString:@"\n"];
for (int i = 0; i < labels.count; i++) {
NSString *label = labels[i];
NSNumber *probability = probabilites[i];
NSLog(@"%@: %f", label, probability.floatValue);
}
新版
do {
// After calling interpreter.invoke():
let output = try interpreter.output(at: 0)
let probabilities =
UnsafeMutableBufferPointer<Float32>.allocate(capacity: 1000)
output.data.copyBytes(to: probabilities)
guard let labelPath = Bundle.main.path(
forResource: "custom_labels",
ofType: "txt"
) else { return }
let fileContents = try? String(contentsOfFile: labelPath)
guard let labels = fileContents?.components(separatedBy: "\n") else { return }
for i in labels.indices {
print("\(labels[i]): \(probabilities[i])")
}
} catch let err {
print(err.localizedDescription)
}
NSError *error = nil;
TFLTensor *output = [interpreter outputTensorAtIndex:0 error:&error];
if (error != nil) { return; }
NSData *outputData = [output dataWithError:&error];
if (error != nil) { return; }
Float32 probabilities[outputData.length / 4];
[outputData getBytes:&probabilities length:outputData.length];
NSString *labelPath = [NSBundle.mainBundle pathForResource:@"custom_labels"
ofType:@"txt"];
NSString *fileContents = [NSString stringWithContentsOfFile:labelPath
encoding:NSUTF8StringEncoding
error:&error];
if (error != nil || fileContents == nil) { return; }
NSArray<NSString *> *labels = [fileContents componentsSeparatedByString:@"\n"];
for (int i = 0; i < labels.count; i++) {
NSLog(@"%@: %f", labels[i], probabilities[i]);
}