זיהוי טקסט בתמונות באמצעות ערכת למידת מכונה ב-Android

אתם יכולים להשתמש ב-ML Kit כדי לזהות טקסט בתמונות. ב-ML Kit יש ממשק API למטרות כלליות שמתאים לזיהוי טקסט בתמונות, כמו הטקסט של שלט רחוב, וגם ממשק API מותאם לזיהוי טקסט במסמכים. ב-API לשימוש כללי יש מודלים במכשיר ומודלים מבוססי-ענן. זיהוי טקסט במסמכים זמין רק כמודל מבוסס-ענן. בסקירה הכללית מופיעה השוואה בין המודלים בענן לבין המודלים במכשיר.

לפני שמתחילים

  1. אם עדיין לא עשיתם זאת, מוסיפים את Firebase לפרויקט Android.
  2. מוסיפים את יחסי התלות של ספריות ML Kit ל-Android לקובץ Gradle של המודול (ברמת האפליקציה) (בדרך כלל app/build.gradle):
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
    }
    
  3. אופציונלי אבל מומלץ: אם אתם משתמשים ב-API במכשיר, כדאי להגדיר שהאפליקציה תוריד את מודל ה-ML למכשיר באופן אוטומטי אחרי ההתקנה שלה מחנות Play.

    כדי לעשות זאת, מוסיפים את ההצהרה הבאה לקובץ AndroidManifest.xml של האפליקציה:

    <application ...>
      ...
      <meta-data
          android:name="com.google.firebase.ml.vision.DEPENDENCIES"
          android:value="ocr" />
      <!-- To use multiple models: android:value="ocr,model2,model3" -->
    </application>
    
    אם לא מפעילים הורדות של מודלים בזמן ההתקנה, המודלים יורדים בפעם הראשונה שמפעילים את הגלאי במכשיר. בקשות שתשלחו לפני שההורדה תסתיים לא יספקו תוצאות.
  4. אם אתם רוצים להשתמש במודל מבוסס-הענן, ואתם עדיין לא הפעלתם את ממשקי ה-API מבוססי-הענן בפרויקט, עליכם לעשות זאת עכשיו:

    1. פותחים את דף ממשקי ה-API של ML Kit במסוף Firebase.
    2. אם עדיין לא שדרגתם את הפרויקט לתוכנית תמחור Blaze, לוחצים על שדרוג. (הבקשה לשדרוג תוצג רק אם הפרויקט לא מוגדר לתוכנית Blaze).

      רק בפרויקטים ברמת Blaze אפשר להשתמש בממשקי API מבוססי-Cloud.

    3. אם ממשקי ה-API מבוססי-הענן עדיין לא מופעלים, לוחצים על Enable Cloud-based APIs.

    אם רוצים להשתמש רק במודל במכשיר, אפשר לדלג על השלב הזה.

עכשיו אפשר להתחיל לזהות טקסט בתמונות.

הנחיות לתמונות קלט

  • כדי ש-ML Kit יזהה טקסט בצורה מדויקת, תמונות הקלט צריכות להכיל טקסט שמיוצג על ידי מספיק נתוני פיקסלים. באופן אידיאלי, לטקסט לטינית, כל תו צריך להיות בגודל של 16x16 פיקסלים לפחות. בטקסט בסינית, ביפנית ובקוריאנית (התמיכה קיימת רק ב-APIs מבוססי-הענן), כל תו צריך להיות בגודל 24x24 פיקסלים. בדרך כלל, בכל השפות אין יתרון של דיוק כשהתווים גדולים מ-24x24 פיקסלים.

    לדוגמה, תמונה בגודל 640x480 יכולה להתאים לסריקה של כרטיס ביקור שממלא את כל רוחב התמונה. כדי לסרוק מסמך שמודפס על נייר בגודל Letter, יכול להיות שתצטרכו תמונה בגודל 720x1280 פיקסלים.

  • מיקוד לקוי של התמונה עלול לפגוע בדיוק זיהוי הטקסט. אם התוצאות לא מתקבלות, נסו לבקש מהמשתמש לצלם מחדש את התמונה.

  • אם אתם מזהים טקסט באפליקציה בזמן אמת, כדאי גם להביא בחשבון את המימדים הכוללים של תמונות הקלט. קל יותר לעבד תמונות קטנות יותר, ולכן כדי לקצר את זמן האחזור, כדאי לצלם תמונות ברזולוציות נמוכות יותר (תוך שמירה על דרישות הדיוק שמפורטות למעלה) ולוודא שהטקסט תופס כמה שיותר מהתמונה. מומלץ גם לעיין בטיפים לשיפור הביצועים בזמן אמת.


זיהוי טקסט בתמונות

כדי לזהות טקסט בתמונה באמצעות מודל במכשיר או מודל מבוסס-ענן, מפעילים את הכלי לזיהוי טקסט כפי שמתואר בהמשך.

1. הרצת הכלי לזיהוי טקסט

כדי לזהות טקסט בתמונה, יוצרים אובייקט FirebaseVisionImage מ-Bitmap, מ-media.Image, מ-ByteBuffer, ממערך בייטים או מקובץ במכשיר. לאחר מכן מעבירים את האובייקט FirebaseVisionImage לשיטה processImage של FirebaseVisionTextRecognizer.

  1. יוצרים אובייקט FirebaseVisionImage מהתמונה.

    • כדי ליצור אובייקט FirebaseVisionImage מאובייקט media.Image, למשל כשיוצרים תמונה ממצלמת המכשיר, מעבירים את האובייקט media.Image ואת סיבוב התמונה אל FirebaseVisionImage.fromMediaImage().

      אם אתם משתמשים בספרייה CameraX, הערך של הזווית מסתובב בעצמו על ידי הכיתות OnImageCapturedListener ו-ImageAnalysis.Analyzer, כך שצריך רק להמיר את הזווית לאחד מהקבועים ROTATION_ של ML Kit לפני שמפעילים את FirebaseVisionImage.fromMediaImage():

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }
      

      Kotlin+KTX

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }
      

      אם אתם לא משתמשים בספריית מצלמה שמספקת את כיוון התמונה, תוכלו לחשב אותו לפי כיוון המכשיר וכיוון החיישן במצלמה במכשיר:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin+KTX

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      לאחר מכן מעבירים את האובייקט media.Image ואת ערך הסיבוב אל FirebaseVisionImage.fromMediaImage():

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • כדי ליצור אובייקט FirebaseVisionImage מכתובת URI של קובץ, מעבירים את הקשר של האפליקציה ואת כתובת ה-URI של הקובץ אל FirebaseVisionImage.fromFilePath(). האפשרות הזו שימושית כשמשתמשים בכוונה ACTION_GET_CONTENT כדי לבקש מהמשתמש לבחור תמונה מאפליקציית הגלריה שלו.

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin+KTX

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • כדי ליצור אובייקט FirebaseVisionImage מ-ByteBuffer או ממערך בייטים, קודם מחשבים את סיבוב התמונה כפי שמתואר למעלה עבור קלט media.Image.

      לאחר מכן יוצרים אובייקט FirebaseVisionImageMetadata שמכיל את הגובה, הרוחב, פורמט קידוד הצבע והסיבוב של התמונה:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin+KTX

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      משתמשים במאגר או במערך ובאובייקט המטא-נתונים כדי ליצור אובייקט FirebaseVisionImage:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • כדי ליצור אובייקט FirebaseVisionImage מאובייקט Bitmap:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      התמונה שמיוצגת על ידי האובייקט Bitmap חייבת להיות מוצבת בצורה זקופה, ללא צורך בסיבוב נוסף.

  2. קבלת מופע של FirebaseVisionTextRecognizer.

    כדי להשתמש במודל במכשיר:

    Java

    FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
            .getOnDeviceTextRecognizer();

    Kotlin+KTX

    val detector = FirebaseVision.getInstance()
            .onDeviceTextRecognizer

    כדי להשתמש במודל מבוסס-הענן:

    Java

    FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudTextRecognizer();
    // Or, to change the default settings:
    //   FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
    //          .getCloudTextRecognizer(options);
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FirebaseVisionCloudTextRecognizerOptions options = new FirebaseVisionCloudTextRecognizerOptions.Builder()
            .setLanguageHints(Arrays.asList("en", "hi"))
            .build();
    

    Kotlin+KTX

    val detector = FirebaseVision.getInstance().cloudTextRecognizer
    // Or, to change the default settings:
    // val detector = FirebaseVision.getInstance().getCloudTextRecognizer(options)
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    val options = FirebaseVisionCloudTextRecognizerOptions.Builder()
            .setLanguageHints(listOf("en", "hi"))
            .build()
    
  3. לבסוף, מעבירים את התמונה לשיטה processImage:

    Java

    Task<FirebaseVisionText> result =
            detector.processImage(image)
                    .addOnSuccessListener(new OnSuccessListener<FirebaseVisionText>() {
                        @Override
                        public void onSuccess(FirebaseVisionText firebaseVisionText) {
                            // Task completed successfully
                            // ...
                        }
                    })
                    .addOnFailureListener(
                            new OnFailureListener() {
                                @Override
                                public void onFailure(@NonNull Exception e) {
                                    // Task failed with an exception
                                    // ...
                                }
                            });

    Kotlin+KTX

    val result = detector.processImage(image)
            .addOnSuccessListener { firebaseVisionText ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener { e ->
                // Task failed with an exception
                // ...
            }

2. חילוץ טקסט מקטעי טקסט מזוהים

אם פעולת זיהוי הטקסט תצליח, אובייקט FirebaseVisionText יועבר למאזין להצלחה. אובייקט FirebaseVisionText מכיל את הטקסט המלא שזוהה בתמונה ואפס או יותר אובייקטים מסוג TextBlock.

כל TextBlock מייצג בלוק טקסט מלבני שמכיל אפס או יותר אובייקטים מסוג Line. כל אובייקט Line מכיל אפס או יותר אובייקטים מסוג Element, שמייצגים מילים וישויות שדומות למילים (תאריכים, מספרים וכו').

לכל אובייקט TextBlock,‏ Line ו-Element, אפשר לקבל את הטקסט שזוהה באזור ואת קואורדינטות הגבול של האזור.

לדוגמה:

Java

String resultText = result.getText();
for (FirebaseVisionText.TextBlock block: result.getTextBlocks()) {
    String blockText = block.getText();
    Float blockConfidence = block.getConfidence();
    List<RecognizedLanguage> blockLanguages = block.getRecognizedLanguages();
    Point[] blockCornerPoints = block.getCornerPoints();
    Rect blockFrame = block.getBoundingBox();
    for (FirebaseVisionText.Line line: block.getLines()) {
        String lineText = line.getText();
        Float lineConfidence = line.getConfidence();
        List<RecognizedLanguage> lineLanguages = line.getRecognizedLanguages();
        Point[] lineCornerPoints = line.getCornerPoints();
        Rect lineFrame = line.getBoundingBox();
        for (FirebaseVisionText.Element element: line.getElements()) {
            String elementText = element.getText();
            Float elementConfidence = element.getConfidence();
            List<RecognizedLanguage> elementLanguages = element.getRecognizedLanguages();
            Point[] elementCornerPoints = element.getCornerPoints();
            Rect elementFrame = element.getBoundingBox();
        }
    }
}

Kotlin+KTX

val resultText = result.text
for (block in result.textBlocks) {
    val blockText = block.text
    val blockConfidence = block.confidence
    val blockLanguages = block.recognizedLanguages
    val blockCornerPoints = block.cornerPoints
    val blockFrame = block.boundingBox
    for (line in block.lines) {
        val lineText = line.text
        val lineConfidence = line.confidence
        val lineLanguages = line.recognizedLanguages
        val lineCornerPoints = line.cornerPoints
        val lineFrame = line.boundingBox
        for (element in line.elements) {
            val elementText = element.text
            val elementConfidence = element.confidence
            val elementLanguages = element.recognizedLanguages
            val elementCornerPoints = element.cornerPoints
            val elementFrame = element.boundingBox
        }
    }
}

טיפים לשיפור הביצועים בזמן אמת

אם אתם רוצים להשתמש במודל במכשיר כדי לזהות טקסט באפליקציה בזמן אמת, כדאי לפעול לפי ההנחיות הבאות כדי להגיע לשיעורי הפריימים הטובים ביותר:

  • צמצום מספר הקריאות למזהה הטקסט. אם מסגרת וידאו חדשה זמינה בזמן שהכלי לזיהוי טקסט פועל, צריך להסיר את המסגרת.
  • אם אתם משתמשים בפלט של זיהוי הטקסט כדי להוסיף שכבת-על של גרפיקה לתמונה של הקלט, תחילה צריך לקבל את התוצאה מ-ML Kit, ואז לבצע עיבוד (רנדור) של התמונה ושל שכבת-העל בשלב אחד. כך תוכלו לבצע עיבוד (render) למשטח התצוגה רק פעם אחת לכל מסגרת קלט.
  • אם אתם משתמשים ב-Camera2 API, כדאי לצלם תמונות בפורמט ImageFormat.YUV_420_888.

    אם משתמשים ב-Camera API הקודם, צריך לצלם תמונות בפורמט ImageFormat.NV21.

  • כדאי לצלם תמונות ברזולוציה נמוכה יותר. עם זאת, חשוב לזכור גם את הדרישות לגבי מידות התמונות ב-API הזה.

השלבים הבאים


זיהוי טקסט בתמונות של מסמכים

כדי לזהות את הטקסט במסמך, מגדירים ומפעילים את הכלי לזיהוי טקסט במסמכים שמבוסס על ענן, כפי שמתואר בהמשך.

ממשק ה-API לזיהוי טקסט במסמכים, שמתואר בהמשך, מספק ממשק שנועד להקל על העבודה עם תמונות של מסמכים. עם זאת, אם אתם מעדיפים את הממשק שמסופק על ידי ה-API של FirebaseVisionTextRecognizer, תוכלו להשתמש בו במקום זאת כדי לסרוק מסמכים. לשם כך, צריך להגדיר את הכלי לזיהוי טקסט בענן כך שישתמש במודל הטקסט הצפוף.

כדי להשתמש ב-Document Text Recognition API:

1. הרצת הכלי לזיהוי טקסט

כדי לזהות טקסט בתמונה, יוצרים אובייקט FirebaseVisionImage ממערך בייטים של Bitmap,‏ media.Image או ByteBuffer, או מקובץ במכשיר. לאחר מכן מעבירים את האובייקט FirebaseVisionImage לשיטה processImage של FirebaseVisionDocumentTextRecognizer.

  1. יוצרים אובייקט FirebaseVisionImage מהתמונה.

    • כדי ליצור אובייקט FirebaseVisionImage מאובייקט media.Image, למשל כשיוצרים תמונה ממצלמת המכשיר, מעבירים את האובייקט media.Image ואת סיבוב התמונה אל FirebaseVisionImage.fromMediaImage().

      אם אתם משתמשים בספרייה CameraX, הערך של הזווית מסתובב בעצמו על ידי הכיתות OnImageCapturedListener ו-ImageAnalysis.Analyzer, כך שצריך רק להמיר את הזווית לאחד מהקבועים ROTATION_ של ML Kit לפני שמפעילים את FirebaseVisionImage.fromMediaImage():

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }
      

      Kotlin+KTX

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }
      

      אם אתם לא משתמשים בספריית מצלמה שמספקת את כיוון התמונה, תוכלו לחשב אותו לפי כיוון המכשיר וכיוון החיישן במצלמה במכשיר:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin+KTX

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      לאחר מכן מעבירים את האובייקט media.Image ואת ערך הסיבוב אל FirebaseVisionImage.fromMediaImage():

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • כדי ליצור אובייקט FirebaseVisionImage מכתובת URI של קובץ, מעבירים את הקשר של האפליקציה ואת כתובת ה-URI של הקובץ אל FirebaseVisionImage.fromFilePath(). האפשרות הזו שימושית כשמשתמשים בכוונה ACTION_GET_CONTENT כדי לבקש מהמשתמש לבחור תמונה מאפליקציית הגלריה שלו.

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin+KTX

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • כדי ליצור אובייקט FirebaseVisionImage מ-ByteBuffer או ממערך בייטים, קודם מחשבים את סיבוב התמונה כפי שמתואר למעלה עבור קלט media.Image.

      לאחר מכן יוצרים אובייקט FirebaseVisionImageMetadata שמכיל את הגובה, הרוחב, פורמט קידוד הצבע והסיבוב של התמונה:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin+KTX

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      משתמשים במאגר או במערך ובאובייקט המטא-נתונים כדי ליצור אובייקט FirebaseVisionImage:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • כדי ליצור אובייקט FirebaseVisionImage מאובייקט Bitmap:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      התמונה שמיוצגת על ידי האובייקט Bitmap חייבת להיות מוצבת בצורה זקופה, ללא צורך בסיבוב נוסף.

  2. אחזור מופע של FirebaseVisionDocumentTextRecognizer:

    Java

    FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer();
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FirebaseVisionCloudDocumentRecognizerOptions options =
            new FirebaseVisionCloudDocumentRecognizerOptions.Builder()
                    .setLanguageHints(Arrays.asList("en", "hi"))
                    .build();
    FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer(options);

    Kotlin+KTX

    val detector = FirebaseVision.getInstance()
            .cloudDocumentTextRecognizer
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    val options = FirebaseVisionCloudDocumentRecognizerOptions.Builder()
            .setLanguageHints(listOf("en", "hi"))
            .build()
    val detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer(options)

  3. לבסוף, מעבירים את התמונה לשיטה processImage:

    Java

    detector.processImage(myImage)
            .addOnSuccessListener(new OnSuccessListener<FirebaseVisionDocumentText>() {
                @Override
                public void onSuccess(FirebaseVisionDocumentText result) {
                    // Task completed successfully
                    // ...
                }
            })
            .addOnFailureListener(new OnFailureListener() {
                @Override
                public void onFailure(@NonNull Exception e) {
                    // Task failed with an exception
                    // ...
                }
            });

    Kotlin+KTX

    detector.processImage(myImage)
            .addOnSuccessListener { firebaseVisionDocumentText ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener { e ->
                // Task failed with an exception
                // ...
            }

2. חילוץ טקסט מקטעי טקסט מזוהים

אם פעולת זיהוי הטקסט תצליח, היא תחזיר אובייקט FirebaseVisionDocumentText. אובייקט FirebaseVisionDocumentText מכיל את הטקסט המלא שזוהה בתמונה ואת היררכיית האובייקטים שמשקפת את המבנה של המסמך שזוהה:

לכל אובייקט Block,‏ Paragraph,‏ Word ו-Symbol, אפשר לקבל את הטקסט שזוהה באזור ואת קואורדינטות הגבול של האזור.

לדוגמה:

Java

String resultText = result.getText();
for (FirebaseVisionDocumentText.Block block: result.getBlocks()) {
    String blockText = block.getText();
    Float blockConfidence = block.getConfidence();
    List<RecognizedLanguage> blockRecognizedLanguages = block.getRecognizedLanguages();
    Rect blockFrame = block.getBoundingBox();
    for (FirebaseVisionDocumentText.Paragraph paragraph: block.getParagraphs()) {
        String paragraphText = paragraph.getText();
        Float paragraphConfidence = paragraph.getConfidence();
        List<RecognizedLanguage> paragraphRecognizedLanguages = paragraph.getRecognizedLanguages();
        Rect paragraphFrame = paragraph.getBoundingBox();
        for (FirebaseVisionDocumentText.Word word: paragraph.getWords()) {
            String wordText = word.getText();
            Float wordConfidence = word.getConfidence();
            List<RecognizedLanguage> wordRecognizedLanguages = word.getRecognizedLanguages();
            Rect wordFrame = word.getBoundingBox();
            for (FirebaseVisionDocumentText.Symbol symbol: word.getSymbols()) {
                String symbolText = symbol.getText();
                Float symbolConfidence = symbol.getConfidence();
                List<RecognizedLanguage> symbolRecognizedLanguages = symbol.getRecognizedLanguages();
                Rect symbolFrame = symbol.getBoundingBox();
            }
        }
    }
}

Kotlin+KTX

val resultText = result.text
for (block in result.blocks) {
    val blockText = block.text
    val blockConfidence = block.confidence
    val blockRecognizedLanguages = block.recognizedLanguages
    val blockFrame = block.boundingBox
    for (paragraph in block.paragraphs) {
        val paragraphText = paragraph.text
        val paragraphConfidence = paragraph.confidence
        val paragraphRecognizedLanguages = paragraph.recognizedLanguages
        val paragraphFrame = paragraph.boundingBox
        for (word in paragraph.words) {
            val wordText = word.text
            val wordConfidence = word.confidence
            val wordRecognizedLanguages = word.recognizedLanguages
            val wordFrame = word.boundingBox
            for (symbol in word.symbols) {
                val symbolText = symbol.text
                val symbolConfidence = symbol.confidence
                val symbolRecognizedLanguages = symbol.recognizedLanguages
                val symbolFrame = symbol.boundingBox
            }
        }
    }
}

השלבים הבאים