Google 致力于为黑人社区推动种族平等。查看具体举措
此页面由 Cloud Translation API 翻译。
Switch to English

Reconnaître les points de repère avec ML Kit sur Android

Vous pouvez utiliser ML Kit pour reconnaître des points de repère connus dans une image.

Avant que tu commences

  1. Si vous ne l'avez pas déjà fait, ajoutez Firebase à votre projet Android .
  2. Dans votre fichier build.gradle niveau du build.gradle , assurez-vous d'inclure le référentiel Maven de Google dans vos sections buildscript et allprojects .
  3. Ajoutez les dépendances des bibliothèques ML Kit Android à votre fichier Gradle de module (au niveau de l'application) (généralement app/build.gradle ):
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
    }
    
  4. Si vous n'avez pas encore activé les API Cloud pour votre projet, faites-le maintenant:

    1. Ouvrez la page API ML Kit de la console Firebase.
    2. Si vous n'avez pas encore mis à niveau votre projet vers un plan Blaze, cliquez sur Mettre à niveau pour le faire. (Vous ne serez invité à mettre à niveau que si votre projet ne fait pas partie du plan Blaze.)

      Seuls les projets de niveau Blaze peuvent utiliser des API basées sur le cloud.

    3. Si les API basées sur le cloud ne sont pas déjà activées, cliquez sur Activer les API basées sur le cloud .

Configurer le détecteur de repère

Par défaut, le détecteur Cloud utilise la version STABLE du modèle et renvoie jusqu'à 10 résultats. Si vous souhaitez modifier l'un de ces paramètres, spécifiez-les avec un objet FirebaseVisionCloudDetectorOptions .

Par exemple, pour modifier les deux paramètres par défaut, FirebaseVisionCloudDetectorOptions un objet FirebaseVisionCloudDetectorOptions comme dans l'exemple suivant:

Java

FirebaseVisionCloudDetectorOptions options =
        new FirebaseVisionCloudDetectorOptions.Builder()
                .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL)
                .setMaxResults(15)
                .build();

Kotlin + KTX

val options = FirebaseVisionCloudDetectorOptions.Builder()
        .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL)
        .setMaxResults(15)
        .build()

Pour utiliser les paramètres par défaut, vous pouvez utiliser FirebaseVisionCloudDetectorOptions.DEFAULT à l'étape suivante.

Exécutez le détecteur de repère

Pour reconnaître les points de repère dans une image, créez un objet FirebaseVisionImage partir d'un Bitmap , d'un media.Image , d'un ByteBuffer , d'un tableau d'octets ou d'un fichier sur l'appareil. Ensuite, transmettez l'objet FirebaseVisionImage à la méthode detectInImage FirebaseVisionCloudLandmarkDetector .

  1. Créez un objet FirebaseVisionImage partir de votre image.

    • Pour créer un objet FirebaseVisionImage partir d'un objet media.Image , par exemple lors de la capture d'une image à partir de la caméra d'un périphérique, transmettez l'objet media.Image et la rotation de l'image à FirebaseVisionImage.fromMediaImage() .

      Si vous utilisez la bibliothèque CameraX , les classes OnImageCapturedListener et ImageAnalysis.Analyzer calculent la valeur de rotation pour vous, il vous suffit donc de convertir la rotation en l'une des constantes ROTATION_ de ML Kit avant d'appeler FirebaseVisionImage.fromMediaImage() :

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }
      

      Kotlin + KTX

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }
      

      Si vous n'utilisez pas de bibliothèque de caméras qui vous donne la rotation de l'image, vous pouvez la calculer à partir de la rotation de l'appareil et de l'orientation du capteur de la caméra dans l'appareil:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin + KTX

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Ensuite, passez l'objet media.Image et la valeur de rotation à FirebaseVisionImage.fromMediaImage() :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin + KTX

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • Pour créer un objet FirebaseVisionImage partir d'un URI de fichier, transmettez le contexte de l'application et l'URI du fichier à FirebaseVisionImage.fromFilePath() . Cela est utile lorsque vous utilisez une intention ACTION_GET_CONTENT pour inviter l'utilisateur à sélectionner une image dans son application de galerie.

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin + KTX

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • Pour créer un objet FirebaseVisionImage partir d'un ByteBuffer ou d'un tableau d'octets, commencez par calculer la rotation de l'image comme décrit ci-dessus pour l'entrée media.Image .

      Ensuite, créez un objet FirebaseVisionImageMetadata qui contient la hauteur, la largeur, le format de codage des couleurs et la rotation de l'image:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin + KTX

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      Utilisez le tampon ou le tableau et l'objet de métadonnées pour créer un objet FirebaseVisionImage :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin + KTX

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • Pour créer un objet FirebaseVisionImage partir d'un objet Bitmap :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin + KTX

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      L'image représentée par l'objet Bitmap doit être verticale, sans rotation supplémentaire requise.

  2. Obtenez une instance de FirebaseVisionCloudLandmarkDetector :

    Java

    FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance()
            .getVisionCloudLandmarkDetector();
    // Or, to change the default settings:
    // FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance()
    //         .getVisionCloudLandmarkDetector(options);

    Kotlin + KTX

    val detector = FirebaseVision.getInstance()
            .visionCloudLandmarkDetector
    // Or, to change the default settings:
    // val detector = FirebaseVision.getInstance()
    //         .getVisionCloudLandmarkDetector(options)
  3. Enfin, passez l'image à la méthode detectInImage :

    Java

    Task<List<FirebaseVisionCloudLandmark>> result = detector.detectInImage(image)
            .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionCloudLandmark>>() {
                @Override
                public void onSuccess(List<FirebaseVisionCloudLandmark> firebaseVisionCloudLandmarks) {
                    // Task completed successfully
                    // ...
                }
            })
            .addOnFailureListener(new OnFailureListener() {
                @Override
                public void onFailure(@NonNull Exception e) {
                    // Task failed with an exception
                    // ...
                }
            });

    Kotlin + KTX

    val result = detector.detectInImage(image)
            .addOnSuccessListener { firebaseVisionCloudLandmarks ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener { e ->
                // Task failed with an exception
                // ...
            }

Obtenez des informations sur les monuments reconnus

Si l'opération de reconnaissance de point de repère réussit, une liste d'objets FirebaseVisionCloudLandmark sera transmise à l'écouteur de réussite. Chaque objet FirebaseVisionCloudLandmark représente un repère qui a été reconnu dans l'image. Pour chaque repère, vous pouvez obtenir ses coordonnées de délimitation dans l'image d'entrée, le nom du repère, sa latitude et sa longitude, son ID d'entité Knowledge Graph (si disponible) et le score de confiance de la correspondance. Par exemple:

Java

for (FirebaseVisionCloudLandmark landmark: firebaseVisionCloudLandmarks) {

    Rect bounds = landmark.getBoundingBox();
    String landmarkName = landmark.getLandmark();
    String entityId = landmark.getEntityId();
    float confidence = landmark.getConfidence();

    // Multiple locations are possible, e.g., the location of the depicted
    // landmark and the location the picture was taken.
    for (FirebaseVisionLatLng loc: landmark.getLocations()) {
        double latitude = loc.getLatitude();
        double longitude = loc.getLongitude();
    }
}

Kotlin + KTX

for (landmark in firebaseVisionCloudLandmarks) {

    val bounds = landmark.boundingBox
    val landmarkName = landmark.landmark
    val entityId = landmark.entityId
    val confidence = landmark.confidence

    // Multiple locations are possible, e.g., the location of the depicted
    // landmark and the location the picture was taken.
    for (loc in landmark.locations) {
        val latitude = loc.latitude
        val longitude = loc.longitude
    }
}

Prochaines étapes