Détecter des visages avec ML Kit sur Android

Vous pouvez utiliser ML Kit pour détecter des visages dans des images et des vidéos.

Avant de commencer

  1. Si ce n'est pas déjà fait, Ajoutez Firebase à votre projet Android.
  2. Ajouter les dépendances des bibliothèques Android ML Kit à votre module Fichier Gradle (au niveau de l'application) (généralement app/build.gradle):
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
      // If you want to detect face contours (landmark detection and classification
      // don't require this additional model):
      implementation 'com.google.firebase:firebase-ml-vision-face-model:20.0.1'
    }
  3. Facultatif, mais recommandé : configurez votre application pour qu'elle télécharge automatiquement le modèle de ML sur l'appareil une fois qu'elle est installée depuis le Play Store.

    Pour ce faire, ajoutez la déclaration suivante au fichier Fichier AndroidManifest.xml:

    <application ...>
      ...
      <meta-data
          android:name="com.google.firebase.ml.vision.DEPENDENCIES"
          android:value="face" />
      <!-- To use multiple models: android:value="face,model2,model3" -->
    </application>
    Si vous n'activez pas les téléchargements de modèles au moment de l'installation, le modèle sera téléchargée la première fois que vous exécutez le détecteur. Demandes que vous envoyez avant le terminé ne produira aucun résultat.

Consignes pour les images d'entrée

Pour que ML Kit détecte précisément les visages, les images d'entrée doivent contenir des visages représentés par suffisamment de données de pixel. En général, chaque visage que vous souhaitez à détecter dans une image doivent être d'au moins 100 x 100 pixels. Si vous souhaitez détecter les contours des visages, ML Kit nécessite une résolution plus élevée: chaque visage elle doit faire au moins 200 x 200 pixels.

Si vous détectez des visages dans une application en temps réel, vous pouvez également pour prendre en compte les dimensions globales des images d'entrée. Les images plus petites peuvent être sont traitées plus rapidement. Pour réduire la latence, capturez des images à des résolutions inférieures. (en tenant compte des critères de précision ci-dessus) et assurez-vous que le visage du sujet occupe le plus d'espace possible dans l'image. Voir aussi Conseils pour améliorer les performances en temps réel

Une mise au point médiocre peut nuire à la précision. Si vous n'obtenez pas de résultats acceptables, essayez de demander à l'utilisateur de reprendre l'image.

L'orientation d'un visage par rapport à l'appareil photo peut aussi avoir une incidence sur le comportement détecte les caractéristiques détectées par ML Kit. Voir Détection de visages Concepts.

1. Configurer le détecteur de visages

Avant d'appliquer la détection des visages à une image, vous pouvez modifier les paramètres paramètres par défaut du détecteur de visages, définissez ces paramètres à l'aide d'une objet FirebaseVisionFaceDetectorOptions. Vous pouvez modifier les paramètres suivants:

Paramètres
Mode Performances FAST (par défaut) | ACCURATE

Privilégiez la vitesse ou la précision lors de la détection des visages.

Détecter les points de repère NO_LANDMARKS (par défaut) | ALL_LANDMARKS

S'il faut essayer d'identifier les « points de repère » du visage : yeux, oreilles, nez, les joues, la bouche, etc.

Détecter les contours NO_CONTOURS (par défaut) | ALL_CONTOURS

Indique s'il faut détecter les contours des traits du visage. Les contours ne sont détectés que pour le visage le plus visible d'une image.

Classer des visages NO_CLASSIFICATIONS (par défaut) | ALL_CLASSIFICATIONS

Indique si les visages doivent être classés ou non en catégories telles que "sourire" et "yeux ouverts".

Taille minimale du visage float (par défaut : 0.1f)

Taille minimale, par rapport à l'image, des visages à détecter.

Activer le suivi du visage false (par défaut) | true

Permet d'attribuer ou non aux visages un ID qui peut être utilisé pour suivre visages sur les images.

Notez que lorsque la détection des contours est activée, un seul visage est détecté, le suivi des visages ne produit donc pas de résultats utiles. Pour cette et pour améliorer la vitesse de détection, n'activez pas les deux et le suivi des visages.

Exemple :

Java

// High-accuracy landmark detection and face classification
FirebaseVisionFaceDetectorOptions highAccuracyOpts =
        new FirebaseVisionFaceDetectorOptions.Builder()
                .setPerformanceMode(FirebaseVisionFaceDetectorOptions.ACCURATE)
                .setLandmarkMode(FirebaseVisionFaceDetectorOptions.ALL_LANDMARKS)
                .setClassificationMode(FirebaseVisionFaceDetectorOptions.ALL_CLASSIFICATIONS)
                .build();

// Real-time contour detection of multiple faces
FirebaseVisionFaceDetectorOptions realTimeOpts =
        new FirebaseVisionFaceDetectorOptions.Builder()
                .setContourMode(FirebaseVisionFaceDetectorOptions.ALL_CONTOURS)
                .build();

Kotlin+KTX

// High-accuracy landmark detection and face classification
val highAccuracyOpts = FirebaseVisionFaceDetectorOptions.Builder()
        .setPerformanceMode(FirebaseVisionFaceDetectorOptions.ACCURATE)
        .setLandmarkMode(FirebaseVisionFaceDetectorOptions.ALL_LANDMARKS)
        .setClassificationMode(FirebaseVisionFaceDetectorOptions.ALL_CLASSIFICATIONS)
        .build()

// Real-time contour detection of multiple faces
val realTimeOpts = FirebaseVisionFaceDetectorOptions.Builder()
        .setContourMode(FirebaseVisionFaceDetectorOptions.ALL_CONTOURS)
        .build()

2. Lancer le détecteur de visages

Pour détecter les visages sur une image, créez un objet FirebaseVisionImage à partir d'un Bitmap, d'un media.Image, d'un ByteBuffer, d'un tableau d'octets ou d'un fichier sur l'appareil. Ensuite, transmettez l'objet FirebaseVisionImage à la La méthode detectInImage de FirebaseVisionFaceDetector.

Pour la reconnaissance faciale, utilisez une image dont les dimensions sont d'au moins 480 x 360 pixels Pour reconnaître des visages en temps réel, à cette résolution minimale peut aider à réduire la latence.

  1. Créez un objet FirebaseVisionImage à partir de votre image.

    • Pour créer un objet FirebaseVisionImage à partir d'un objet media.Image, par exemple lorsque vous capturez une image à partir de l'appareil photo d'un appareil, transmettez l'objet media.Image et la rotation de l'image à FirebaseVisionImage.fromMediaImage().

      Si vous utilisez les la bibliothèque CameraX, les OnImageCapturedListener et Les classes ImageAnalysis.Analyzer calculent la valeur de rotation Il vous suffit donc de convertir la rotation en une Constantes ROTATION_ avant l'appel FirebaseVisionImage.fromMediaImage():

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }

      Kotlin+KTX

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }

      Si vous n'utilisez pas de bibliothèque d'appareil photo qui vous indique la rotation de l'image, vous pouvez la calculer à partir de la rotation de l'appareil et de l'orientation du capteur de l'appareil photo dans l'appareil :

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin+KTX

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Ensuite, transmettez l'objet media.Image et valeur de rotation sur FirebaseVisionImage.fromMediaImage():

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • Pour créer un objet FirebaseVisionImage à partir d'un URI de fichier, transmettez le contexte de l'application et l'URI du fichier FirebaseVisionImage.fromFilePath() Cela est utile lorsque vous Utiliser un intent ACTION_GET_CONTENT pour inviter l'utilisateur à sélectionner une image de son application Galerie.

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin+KTX

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • Pour créer un objet FirebaseVisionImage à partir d'un ByteBuffer ou un tableau d'octets, calculez d'abord l'image comme décrit ci-dessus pour l'entrée media.Image.

      Ensuite, créez un objet FirebaseVisionImageMetadata. qui contient la hauteur, la largeur, le format d'encodage des couleurs de l'image et rotation:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin+KTX

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      Utilisez le tampon ou le tableau ainsi que l'objet de métadonnées pour créer une Objet FirebaseVisionImage:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • Pour créer un objet FirebaseVisionImage à partir d'un Objet Bitmap:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      L'image représentée par l'objet Bitmap doit être à la verticale, sans effectuer de rotation supplémentaire.
  2. Obtenez une instance de FirebaseVisionFaceDetector:

    Java

    FirebaseVisionFaceDetector detector = FirebaseVision.getInstance()
            .getVisionFaceDetector(options);

    Kotlin+KTX

    val detector = FirebaseVision.getInstance()
            .getVisionFaceDetector(options)
  3. Enfin, transmettez l'image à la méthode detectInImage:

    Java

    Task<List<FirebaseVisionFace>> result =
            detector.detectInImage(image)
                    .addOnSuccessListener(
                            new OnSuccessListener<List<FirebaseVisionFace>>() {
                                @Override
                                public void onSuccess(List<FirebaseVisionFace> faces) {
                                    // Task completed successfully
                                    // ...
                                }
                            })
                    .addOnFailureListener(
                            new OnFailureListener() {
                                @Override
                                public void onFailure(@NonNull Exception e) {
                                    // Task failed with an exception
                                    // ...
                                }
                            });

    Kotlin+KTX

    val result = detector.detectInImage(image)
            .addOnSuccessListener { faces ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener { e ->
                // Task failed with an exception
                // ...
            }

3. Obtenir des informations sur les visages détectés

Si l'opération de reconnaissance faciale aboutit, une liste Les objets FirebaseVisionFace seront transmis à l'API l'écouteur. Chaque objet FirebaseVisionFace représente un visage détecté. dans l'image. Pour chaque face, vous pouvez obtenir ses coordonnées de délimitation dans l'entrée ainsi que toute autre information que vous avez configurée trouver. Exemple :

Java

for (FirebaseVisionFace face : faces) {
    Rect bounds = face.getBoundingBox();
    float rotY = face.getHeadEulerAngleY();  // Head is rotated to the right rotY degrees
    float rotZ = face.getHeadEulerAngleZ();  // Head is tilted sideways rotZ degrees

    // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
    // nose available):
    FirebaseVisionFaceLandmark leftEar = face.getLandmark(FirebaseVisionFaceLandmark.LEFT_EAR);
    if (leftEar != null) {
        FirebaseVisionPoint leftEarPos = leftEar.getPosition();
    }

    // If contour detection was enabled:
    List<FirebaseVisionPoint> leftEyeContour =
            face.getContour(FirebaseVisionFaceContour.LEFT_EYE).getPoints();
    List<FirebaseVisionPoint> upperLipBottomContour =
            face.getContour(FirebaseVisionFaceContour.UPPER_LIP_BOTTOM).getPoints();

    // If classification was enabled:
    if (face.getSmilingProbability() != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) {
        float smileProb = face.getSmilingProbability();
    }
    if (face.getRightEyeOpenProbability() != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) {
        float rightEyeOpenProb = face.getRightEyeOpenProbability();
    }

    // If face tracking was enabled:
    if (face.getTrackingId() != FirebaseVisionFace.INVALID_ID) {
        int id = face.getTrackingId();
    }
}

Kotlin+KTX

for (face in faces) {
    val bounds = face.boundingBox
    val rotY = face.headEulerAngleY // Head is rotated to the right rotY degrees
    val rotZ = face.headEulerAngleZ // Head is tilted sideways rotZ degrees

    // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
    // nose available):
    val leftEar = face.getLandmark(FirebaseVisionFaceLandmark.LEFT_EAR)
    leftEar?.let {
        val leftEarPos = leftEar.position
    }

    // If contour detection was enabled:
    val leftEyeContour = face.getContour(FirebaseVisionFaceContour.LEFT_EYE).points
    val upperLipBottomContour = face.getContour(FirebaseVisionFaceContour.UPPER_LIP_BOTTOM).points

    // If classification was enabled:
    if (face.smilingProbability != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) {
        val smileProb = face.smilingProbability
    }
    if (face.rightEyeOpenProbability != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) {
        val rightEyeOpenProb = face.rightEyeOpenProbability
    }

    // If face tracking was enabled:
    if (face.trackingId != FirebaseVisionFace.INVALID_ID) {
        val id = face.trackingId
    }
}

Exemple de contours d'un visage

Lorsque la détection des contours du visage est activée, vous obtenez une liste de points pour chaque caractéristique du visage détectée. Ces points représentent la forme . Observez le visage Présentation des concepts de détection pour en savoir plus sur la façon dont les contours représentées.

L'image suivante illustre la correspondance entre ces points et une face (cliquez sur l'icône image à agrandir):

Détection des visages en temps réel

Si vous souhaitez utiliser la détection de visage dans une application en temps réel, suivez ces consignes pour obtenir les meilleurs fréquences d'images :

  • Configurez le détecteur de visages pour utiliser la détection ou la classification du contour du visage et la détection de points de repère, mais pas les deux:

    Détection de contours
    Détection de points de repère
    Classification
    Détection et classification des points de repère
    Détection de contours et de points de repère
    Détection et classification de contours
    Détection de contours, détection de points de repère et classification

  • Activez le mode FAST (activé par défaut).

  • Envisagez de capturer des images à une résolution plus faible. Toutefois, gardez à l'esprit les exigences concernant les dimensions des images de cette API.

  • Limiter les appels au détecteur. Si une nouvelle image vidéo devient disponible pendant l'exécution du détecteur, supprimez la trame.
  • Si vous utilisez la sortie du détecteur pour superposer des images l'image d'entrée, récupérez d'abord le résultat à partir de ML Kit, puis effectuez le rendu de l'image. et les superposer en une seule étape. Cela vous permet d'afficher sur la surface d'affichage une seule fois pour chaque trame d'entrée.
  • Si vous utilisez l'API Camera2, capturez des images au format ImageFormat.YUV_420_888.

    Si vous utilisez l'ancienne API Camera, capturez les images Format ImageFormat.NV21.