W tym przewodniku dowiesz się, jak zacząć korzystać z funkcji Gemini API in Vertex AI bezpośrednio z aplikacji za pomocą pakietu SDK Vertex AI in Firebase na wybranej platformie.
Inne opcje dotyczące Gemini API
Opcjonalnie możesz wypróbować alternatywną wersję „Google AI” usługi Gemini API
. Możesz uzyskać bezpłatny dostęp (w ograniczonym zakresie i w miejscach, w których jest dostępny) za pomocą pakietów SDK klienta Google AI Studio i Google AI. Pakiety SDK powinny być używane tylko do tworzenia prototypów w aplikacjach mobilnych i internetowych.Gdy już poznasz działanie interfejsu Gemini API, przenieś się na nasze pakiety Vertex AI in Firebase SDK (ta dokumentacja), które zawierają wiele dodatkowych funkcji ważnych dla aplikacji mobilnych i internetowych, takich jak ochrona interfejsu API przed nadużyciami za pomocą Firebase App Check oraz obsługa dużych plików multimedialnych w żądaniach.
Opcjonalnie wywołaj Gemini API in Vertex AI po stronie serwera (np. w Pythonie, Node.js lub Go)
Użyj pakietu Vertex AI SDK po stronie serwera Genkit lub Firebase Extensions dla Gemini API.
Pamiętaj, że możesz też skorzystać z tego przewodnika, aby rozpocząć dostępowanie do modeli Imagen za pomocą pakietów SDK Vertex AI in Firebase.
Wymagania wstępne
W tym przewodniku zakładamy, że znasz już podstawy tworzenia aplikacji za pomocą Fluttera.
Upewnij się, że środowisko programistyczne i aplikacja Flutter spełniają te wymagania:
- Dart 3.2.0 lub nowszy
(Opcjonalnie) Zapoznaj się z przykładową aplikacją.
Możesz szybko wypróbować pakiet SDK, zobaczyć pełną implementację różnych przypadków użycia lub użyć przykładowej aplikacji, jeśli nie masz własnej aplikacji Flutter. Aby użyć przykładowej aplikacji, musisz połączyć ją z projektem Firebase.
Krok 1. Skonfiguruj projekt Firebase i połącz z nim aplikację.
Jeśli masz już projekt Firebase i aplikację połączoną z Firebase
W konsoli Firebase otwórz stronę Vertex AI.
Kliknij kartę Vertex AI in Firebase, aby uruchomić przepływ pracy, który pomoże Ci wykonać te czynności:
Przejdź w projekcie na abonament Blaze z taryfą płatności według wykorzystania.
Włącz wymagane interfejsy API w projekcie (interfejs API Vertex AI i interfejs API Vertex AI in Firebase).
Aby dodać pakiet SDK do aplikacji, przejdź do następnego kroku w tym przewodniku.
Jeśli nie masz jeszcze projektu Firebase i aplikacji połączonej z Firebase:
Konfigurowanie projektu Firebase
Zaloguj się w konsoli Firebase.
Kliknij Utwórz projekt, a potem wybierz jedną z tych opcji:
Opcja 1: utwórz zupełnie nowy projekt Firebase (i jego podstawowy projekt Google Cloud automatycznie), wpisując nową nazwę projektu w pierwszym kroku procesu „Tworzenie projektu”.
Opcja 2: dodaj Firebase do istniejącego projektu Google Cloud, wybierając jego nazwę Google Cloud w menu w pierwszym kroku procesu „Tworzenie projektu”.
Pamiętaj, że w razie wyświetlenia prośby nie musisz konfigurować pakietu Google Analytics, aby używać pakietów SDK Vertex AI in Firebase.
W konsoli Firebase otwórz stronę Vertex AI.
Kliknij kartę Vertex AI in Firebase, aby uruchomić przepływ pracy, który pomoże Ci wykonać te czynności:
Przejdź w projekcie na abonament Blaze z taryfą płatności według wykorzystania.
Włącz wymagane interfejsy API w projekcie (interfejs API Vertex AI i interfejs API Vertex AI in Firebase).
Łączenie aplikacji z Firebase
Zainstaluj wymagane narzędzia wiersza poleceń:
Zainstaluj interfejs wiersza poleceń Firebase (jeśli jeszcze go nie masz).
Zaloguj się w Firebase za pomocą konta Google, wykonując to polecenie:
firebase login
Zainstaluj interfejs wiersza poleceń FlutterFire, uruchamiając to polecenie w dowolnym katalogu:
dart pub global activate flutterfire_cli
Skonfiguruj aplikacje pod kątem używania Firebase:
Użyj wiersza poleceń FlutterFire, aby skonfigurować aplikacje Flutter pod kątem połączenia z Firebase.
Aby rozpocząć konfigurację aplikacji, uruchom w katalogu projektu Flutter to polecenie:
flutterfire configure
Do czego służy ten proces
flutterfire configure
?Przepływ pracy
flutterfire configure
wykonuje te czynności:Poproś o wybranie platform (iOS, Android, Web) obsługiwanych w aplikacji Flutter. Dla każdej wybranej platformy wiersz poleceń FlutterFire utworzy nową aplikację Firebase w Twoim projekcie Firebase.
Możesz użyć dotychczasowego projektu Firebase lub utworzyć nowy. Jeśli masz już aplikacje zarejestrowane w istniejącym projekcie Firebase, interfejs wiersza poleceń FlutterFire spróbuje je dopasować na podstawie bieżącej konfiguracji projektu Flutter.
Tworzy plik konfiguracji Firebase (
firebase_options.dart
) i dodaje go do katalogulib/
aplikacji Flutter.
W kolejnych krokach tego przewodnika dodasz do aplikacji pakiet SDK Vertex AI in Firebase i przeprowadzisz wymaganą przez niego inicjalizację, która jest specyficzna dla tego pakietu i elementu Gemini API.
Krok 2. Dodaj pakiet SDK
Po skonfigurowaniu projektu Firebase i połączeniu aplikacji z Firebase (patrz poprzedni krok) możesz dodać do aplikacji pakiet SDK Vertex AI in Firebase.
Wtyczka Vertex AI in Firebase dla Fluttera (firebase_vertexai
) zapewnia dostęp do interfejsów API umożliwiających interakcję z modelami Gemini i Imagen.
W katalogu projektu Flutter uruchom to polecenie, aby zainstalować podstawowe i Vertex AI in Firebase:
flutter pub add firebase_core && flutter pub add firebase_vertexai
W pliku
lib/main.dart
zaimportuj podstawowy wtyczkę Firebase, wtyczkę Vertex AI in Firebase oraz wygenerowany wcześniej plik konfiguracji:import 'package:firebase_core/firebase_core.dart'; import 'package:firebase_vertexai/firebase_vertexai.dart'; import 'firebase_options.dart';
W pliku
lib/main.dart
zainicjuj Firebase za pomocą obiektuDefaultFirebaseOptions
wyeksportowanego przez plik konfiguracji:await Firebase.initializeApp( options: DefaultFirebaseOptions.currentPlatform, );
Zbuduj ponownie aplikację Flutter:
flutter run
Krok 3. Inicjuj usługę Vertex AI i utwórz instancję GenerativeModel
.
Zanim zaczniesz wykonywać wywołania interfejsu API i wysyłać prompt do modelu Gemini, musisz zainicjować usługę Vertex AI i utworzyć instancję GenerativeModel
.
import 'package:firebase_vertexai/firebase_vertexai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
final model =
FirebaseVertexAI.instance.generativeModel(model: 'gemini-2.0-flash');
Po przeczytaniu tego przewodnika dowiesz się, jak wybrać model i (opcjonalnie) lokalizację odpowiednią do Twojego przypadku użycia i aplikacji.
Krok 4. Wyślij prośbę o prompt do modelu
Po połączeniu aplikacji z Firebase, dodaniu pakietu SDK i inicjalizacji usługi Vertex AI oraz modelu generatywnego możesz wysłać prośbę o prompt do modelu Gemini.
Możesz użyć generateContent()
, aby wygenerować tekst z promptu tekstowego:
import 'package:firebase_vertexai/firebase_vertexai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
final model =
FirebaseVertexAI.instance.generativeModel(model: 'gemini-2.0-flash');
// Provide a prompt that contains text
final prompt = [Content.text('Write a story about a magic backpack.')];
// To generate text output, call generateContent with the text input
final response = await model.generateContent(prompt);
print(response.text);
Co jeszcze możesz zrobić?
Więcej informacji o obsługiwanych modelach
Dowiedz się więcej o modelach dostępnych w różnych przypadkach użycia oraz o ich limitach i cenach.
Wypróbuj inne funkcje
- Dowiedz się więcej o generowaniu tekstu na podstawie promptów tekstowych, w tym o przesyłaniu odpowiedzi.
- generować tekst na podstawie promptów multimodalnych (w tym tekst, obrazy, pliki PDF, filmy i pliki audio).
- tworzyć rozmowy wieloetapowe (czat);
- generować uporządkowane dane wyjściowe (np. w formacie JSON) zarówno na podstawie promptów tekstowych, jak i promptów multimodalnych;
- generować obrazy na podstawie promptów tekstowych;
- przesyłać dane wejściowe i wyjściowe (w tym dźwięk) za pomocą urządzenia Gemini Live API;
- Użyj funkcji wywoływania, aby połączyć modele generatywne z zewnętrznymi systemami i informacjami.
Dowiedz się, jak kontrolować generowanie treści
- Zrozumieć projektowanie promptów, w tym sprawdzone metody, strategie i przykładowe prompty.
- Skonfiguruj parametry modelu, takie jak temperatura i maksymalna liczba tokenów wyjściowych (w przypadku Gemini) lub format obrazu i generowanie osób (w przypadku Imagen).
- Używaj ustawień bezpieczeństwa, aby dostosować prawdopodobieństwo otrzymywania odpowiedzi, które mogą być uważane za szkodliwe.
Prześlij opinię o swoich wrażeniach związanych z usługą Vertex AI in Firebase