Za pomocą Gemini API możesz prowadzić rozmowy w dowolnej formie na przestrzeni wielu tur. Pakiet SDK Vertex AI in Firebase upraszcza ten proces, zarządzając stanem rozmowy, dzięki czemu w odróżnieniu od pakietów SDK generateContentStream()
i generateContent()
nie musisz samodzielnie przechowywać historii rozmów.
Zanim zaczniesz
Jeśli jeszcze tego nie zrobisz, zapoznaj się z przewodnikiem po pakietach SDK Vertex AI in Firebase. Upewnij się, że wykonałeś/wykonałaś te czynności:
Skonfiguruj nowy lub istniejący projekt Firebase, w tym użyj abonamentu Blaze i włącz wymagane interfejsy API.
Połącz aplikację z Firebase, w tym zarejestruj ją i dodaj do niej konfigurację Firebase.
Dodaj pakiet SDK i zainicjuj usługę Vertex AI oraz model generatywny w swojej aplikacji.
Po połączeniu aplikacji z Firebase, dodaniu pakietu SDK i inicjalizacji usługi Vertex AI oraz modelu generatywnego możesz wywołać funkcję Gemini API.
Wysyłanie prośby o czat
Aby prowadzić rozmowę z wieloma zwrotami (np. na czacie), zacznij od zainicjowania czatu, wywołując funkcję startChat()
. Następnie kliknij sendMessageStream()
(lub sendMessage()
), aby wysłać nową wiadomość do użytkownika. Wiadomość i odpowiedź zostaną dodane do historii czatu.
W przypadku role
powiązanego z treścią w rozmowie dostępne są 2 opcje:
user
: rola, która zapewnia prompty. Ta wartość jest domyślna dla wywołań funkcjisendMessageStream()
(lubsendMessage()
), a jeśli zostanie przekazana inna rola, funkcja rzuci wyjątek.model
: rola, która dostarcza odpowiedzi. Tej roli można używać podczas wywoływania funkcjistartChat()
z istniejącą funkcjąhistory
.
Wybierz, czy chcesz wyświetlić odpowiedź w czasie (sendMessageStream
), czy poczekać na odpowiedź, aż zostanie wygenerowany cały wynik (sendMessage
).
Streaming
Aby uzyskać szybsze interakcje, nie czekaj na pełny wynik wygenerowany przez model, ale zamiast tego użyj strumieniowego przetwarzania wyników częściowych.
Bez przesyłania strumieniowego
Możesz też poczekać na cały wynik zamiast strumieniowego przesyłania. Wynik zostanie zwrócony dopiero po zakończeniu całego procesu generowania.
Dowiedz się, jak wybrać model Gemini i opcjonalnie lokalizacjęodpowiednią do Twojego przypadku użycia i aplikacji.
Co jeszcze możesz zrobić?
- Dowiedz się, jak policzyć tokeny przed wysłaniem długich promptów do modelu.
- Skonfiguruj Cloud Storage for Firebase, aby móc dołączać duże pliki do żądań multimodalnych za pomocą adresów URL Cloud Storage. Pliki mogą zawierać obrazy, pliki PDF, filmy i dźwięk.
- Zacznij myśleć o przygotowaniu usługi do wdrożenia, w tym o skonfigurowaniu Firebase App Check, aby chronić usługę Gemini API przed nadużyciami przez nieautoryzowanych klientów.
Wypróbuj inne funkcje usługi Gemini API
- generować tekst na podstawie promptów tekstowych.
- generować tekst na podstawie promptów multimodalnych (w tym tekstu, obrazów, plików PDF, filmów i plików audio).
- generować dane wyjściowe w uporządkowanym formacie (np. JSON) na podstawie zarówno tekstowych, jak i wielomodalnych promptów;
- Użyj funkcji wywoływania, aby połączyć modele generatywne z zewnętrznymi systemami i informacjami.
Dowiedz się, jak kontrolować generowanie treści
- Poznaj projektowanie promptów, w tym sprawdzone metody, strategie i przykładowe prompty.
- Skonfiguruj parametry modelu, takie jak temperatura i maksymalna liczba tokenów wyjściowych.
- Używaj ustawień bezpieczeństwa, aby dostosować prawdopodobieństwo otrzymywania odpowiedzi, które mogą być szkodliwe.
Więcej informacji o modelach Gemini
Dowiedz się więcej o modelach dostępnych w różnych przypadkach użycia oraz ich limitach i cenach.Prześlij opinię o swoich wrażeniach z korzystania z usługi Vertex AI in Firebase