Reconnaître des points de repère avec le ML Firebase sur Android

Vous pouvez utiliser Firebase ML pour reconnaître des repères bien connus dans une image.

Avant de commencer

  1. Si ce n'est pas encore fait, ajoutez Firebase à votre projet Android.
  2. Dans votre fichier Gradle de votre module (au niveau de l'application) (généralement <project>/<app-module>/build.gradle.kts ou <project>/<app-module>/build.gradle), ajoutez la dépendance pour la bibliothèque Vision Firebase ML pour Android. Nous vous recommandons d'utiliser Firebase Android BoM pour contrôler le contrôle des versions de la bibliothèque.
    dependencies {
        // Import the BoM for the Firebase platform
        implementation(platform("com.google.firebase:firebase-bom:33.7.0"))
    
        // Add the dependency for the Firebase ML Vision library
        // When using the BoM, you don't specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision'
    }

    En utilisant Firebase Android BoM, votre application utilisera toujours des versions compatibles des bibliothèques Firebase Android.

    (Alternative) Ajoutez des dépendances de bibliothèque Firebase sans utiliser BoM.

    Si vous choisissez de ne pas utiliser Firebase BoM, vous devez spécifier chaque version de la bibliothèque Firebase dans sa ligne de dépendance.

    Notez que si vous utilisez plusieurs bibliothèques Firebase dans votre application, nous vous recommandons vivement d'utiliser BoM pour gérer les versions de la bibliothèque, ce qui garantit que toutes les versions sont compatibles.

    dependencies {
        // Add the dependency for the Firebase ML Vision library
        // When NOT using the BoM, you must specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision:24.1.0'
    }
    Vous recherchez un module de bibliothèque spécifique à Kotlin ? À partir d'octobre 2023 (Firebase BoM 32.5.0), les développeurs Kotlin et Java peuvent dépendre du module de bibliothèque principal (pour en savoir plus, consultez les questions fréquentes sur cette initiative).
  3. Si vous n'avez pas encore activé les API basées sur le cloud pour votre projet, faites-le maintenant:

    1. Ouvrez la page API Firebase ML de la console Firebase.
    2. Si vous n'avez pas encore migré votre projet vers le forfait Blaze, cliquez sur Mettre à niveau pour le faire. (Vous ne serez invité à effectuer la migration que si votre projet n'est pas associé au forfait Blaze.)

      Seuls les projets de niveau Blaze peuvent utiliser les API basées sur le cloud.

    3. Si les API cloud ne sont pas déjà activées, cliquez sur Activer les API cloud.

Configurer le détecteur de repères

Par défaut, le détecteur Cloud utilise la version STABLE du modèle et renvoie jusqu'à 10 résultats. Si vous souhaitez modifier l'un de ces paramètres, spécifiez-le avec un objet FirebaseVisionCloudDetectorOptions.

Par exemple, pour modifier les deux paramètres par défaut, créez un objet FirebaseVisionCloudDetectorOptions comme dans l'exemple suivant:

Kotlin

val options = FirebaseVisionCloudDetectorOptions.Builder()
    .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL)
    .setMaxResults(15)
    .build()

Java

FirebaseVisionCloudDetectorOptions options =
        new FirebaseVisionCloudDetectorOptions.Builder()
                .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL)
                .setMaxResults(15)
                .build();

Pour utiliser les paramètres par défaut, vous pouvez utiliser FirebaseVisionCloudDetectorOptions.DEFAULT à l'étape suivante.

Exécuter le détecteur de points de repère

Pour reconnaître des repères dans une image, créez un objet FirebaseVisionImage à partir d'un Bitmap, media.Image, ByteBuffer, d'un tableau d'octets ou d'un fichier sur l'appareil. Transmettez ensuite l'objet FirebaseVisionImage à la méthode detectInImage de FirebaseVisionCloudLandmarkDetector.

  1. Créez un objet FirebaseVisionImage à partir de votre image.

    • Pour créer un objet FirebaseVisionImage à partir d'un objet media.Image, par exemple lorsque vous capturez une image à partir de l'appareil photo d'un appareil, transmettez l'objet media.Image et la rotation de l'image à FirebaseVisionImage.fromMediaImage().

      Si vous utilisez la bibliothèque CameraX, les classes OnImageCapturedListener et ImageAnalysis.Analyzer calculent la valeur de rotation à votre place. Il vous suffit donc de convertir la rotation en l'une des constantes ROTATION_ de Firebase ML avant d'appeler FirebaseVisionImage.fromMediaImage():

      Kotlin

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Vision API
                  // ...
              }
          }
      }

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Vision API
              // ...
          }
      }

      Si vous n'utilisez pas de bibliothèque d'appareil photo qui vous indique la rotation de l'image, vous pouvez la calculer à partir de la rotation de l'appareil et de l'orientation du capteur de l'appareil photo dans l'appareil:

      Kotlin

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
              .getCameraCharacteristics(cameraId)
              .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Transmettez ensuite l'objet media.Image et la valeur de rotation à FirebaseVisionImage.fromMediaImage():

      Kotlin

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
    • Pour créer un objet FirebaseVisionImage à partir d'un URI de fichier, transmettez le contexte de l'application et l'URI de fichier à FirebaseVisionImage.fromFilePath(). Cela est utile lorsque vous utilisez un intent ACTION_GET_CONTENT pour inviter l'utilisateur à sélectionner une image dans son application Galerie.

      Kotlin

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }
    • Pour créer un objet FirebaseVisionImage à partir d'un ByteBuffer ou d'un tableau d'octets, commencez par calculer la rotation de l'image comme décrit ci-dessus pour l'entrée media.Image.

      Créez ensuite un objet FirebaseVisionImageMetadata contenant la hauteur, la largeur, le format d'encodage des couleurs et la rotation de l'image:

      Kotlin

      val metadata = FirebaseVisionImageMetadata.Builder()
          .setWidth(480) // 480x360 is typically sufficient for
          .setHeight(360) // image recognition
          .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
          .setRotation(rotation)
          .build()

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Utilisez le tampon ou le tableau, ainsi que l'objet de métadonnées, pour créer un objet FirebaseVisionImage:

      Kotlin

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
    • Pour créer un objet FirebaseVisionImage à partir d'un objet Bitmap:

      Kotlin

      val image = FirebaseVisionImage.fromBitmap(bitmap)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
      L'image représentée par l'objet Bitmap doit être à l'endroit, sans rotation supplémentaire requise.

  2. Obtenez une instance de FirebaseVisionCloudLandmarkDetector:

    Kotlin

    val detector = FirebaseVision.getInstance()
        .visionCloudLandmarkDetector
    // Or, to change the default settings:
    // val detector = FirebaseVision.getInstance()
    //         .getVisionCloudLandmarkDetector(options)

    Java

    FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance()
            .getVisionCloudLandmarkDetector();
    // Or, to change the default settings:
    // FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance()
    //         .getVisionCloudLandmarkDetector(options);
  3. Enfin, transmettez l'image à la méthode detectInImage:

    Kotlin

    val result = detector.detectInImage(image)
        .addOnSuccessListener { firebaseVisionCloudLandmarks ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

    Java

    Task<List<FirebaseVisionCloudLandmark>> result = detector.detectInImage(image)
            .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionCloudLandmark>>() {
                @Override
                public void onSuccess(List<FirebaseVisionCloudLandmark> firebaseVisionCloudLandmarks) {
                    // Task completed successfully
                    // ...
                }
            })
            .addOnFailureListener(new OnFailureListener() {
                @Override
                public void onFailure(@NonNull Exception e) {
                    // Task failed with an exception
                    // ...
                }
            });

Obtenir des informations sur les repères reconnus

Si l'opération de reconnaissance de repère aboutit, une liste d'objets FirebaseVisionCloudLandmark est transmise à l'écouteur de succès. Chaque objet FirebaseVisionCloudLandmark représente un repère reconnu dans l'image. Pour chaque point de repère, vous pouvez obtenir ses coordonnées de délimitation dans l'image d'entrée, son nom, sa latitude et sa longitude, son ID d'entité Knowledge Graph (le cas échéant) et le score de confiance de la correspondance. Exemple :

Kotlin

for (landmark in firebaseVisionCloudLandmarks) {
    val bounds = landmark.boundingBox
    val landmarkName = landmark.landmark
    val entityId = landmark.entityId
    val confidence = landmark.confidence

    // Multiple locations are possible, e.g., the location of the depicted
    // landmark and the location the picture was taken.
    for (loc in landmark.locations) {
        val latitude = loc.latitude
        val longitude = loc.longitude
    }
}

Java

for (FirebaseVisionCloudLandmark landmark: firebaseVisionCloudLandmarks) {

    Rect bounds = landmark.getBoundingBox();
    String landmarkName = landmark.getLandmark();
    String entityId = landmark.getEntityId();
    float confidence = landmark.getConfidence();

    // Multiple locations are possible, e.g., the location of the depicted
    // landmark and the location the picture was taken.
    for (FirebaseVisionLatLng loc: landmark.getLocations()) {
        double latitude = loc.getLatitude();
        double longitude = loc.getLongitude();
    }
}

Étapes suivantes