Ao chamar o Gemini API do seu app usando um SDK Vertex AI in Firebase, é possível solicitar que o modelo Gemini gere texto com base em uma entrada somente de texto.
Antes de começar
Conclua o guia para iniciantes dos SDKs do Vertex AI in Firebase, se ainda não tiver feito isso. Verifique se você fez o seguinte:
Configurou um projeto novo ou existente do Firebase, incluindo o uso do plano de preços Blaze e a ativação das APIs necessárias.
Conectou seu app ao Firebase, incluindo o registro e a adição da configuração do Firebase.
Adicione o SDK e inicialize o serviço do Vertex AI e o modelo generativo no seu app.
Depois de conectar seu app ao Firebase, adicionar o SDK e inicializar o serviço Vertex AI e o modelo generativo, você poderá chamar o Gemini API.
Gerar texto com base em uma entrada somente de texto
É possível chamar o Gemini API com uma entrada que inclui apenas texto. Para essas chamadas, é necessário usar um modelo compatível com comandos somente de texto (como Gemini 2.0 Flash).
Escolha se você quer transmitir a resposta (generateContentStream
) ou esperar
pela resposta até que todo o resultado seja gerado (generateContent
).
Streaming
É possível conseguir interações mais rápidas sem esperar pelo resultado completo da geração do modelo e, em vez disso, usar o streaming para processar resultados parciais.
Este exemplo mostra como usar
generateContentStream
para transmitir o texto gerado de uma solicitação de comando que inclui apenas texto:
import FirebaseVertexAI
// Initialize the Vertex AI service
let vertex = VertexAI.vertexAI()
// Initialize the generative model with a model that supports your use case
let model = vertex.generativeModel(modelName: "gemini-2.0-flash")
// Provide a prompt that contains text
let prompt = "Write a story about a magic backpack."
// To stream generated text output, call generateContentStream with the text input
let contentStream = try model.generateContentStream(prompt)
for try await chunk in contentStream {
if let text = chunk.text {
print(text)
}
}
Sem streaming
Como alternativa, você pode esperar o resultado completo em vez de streaming. O resultado só é retornado depois que o modelo conclui todo o processo de geração.
Este exemplo mostra como usar
generateContent
para gerar texto de uma solicitação de comando que inclui apenas texto:
import FirebaseVertexAI
// Initialize the Vertex AI service
let vertex = VertexAI.vertexAI()
// Initialize the generative model with a model that supports your use case
let model = vertex.generativeModel(modelName: "gemini-2.0-flash")
// Provide a prompt that contains text
let prompt = "Write a story about a magic backpack."
// To generate text output, call generateContent with the text input
let response = try await model.generateContent(prompt)
print(response.text ?? "No text in response.")
Saiba como escolher um modelo do Gemini e, opcionalmente, um local adequado para seu caso de uso e app.
O que mais você pode fazer?
- Saiba como contar tokens antes de enviar comandos longos para o modelo.
- Comece a pensar na preparação para a produção, incluindo a configuração de Firebase App Check para proteger o Gemini API contra abusos de clientes não autorizados.
Testar outros recursos do Gemini API
- Crie conversas com vários turnos (chat).
- Gerar texto a partir de comandos multimodais (incluindo texto, imagens, PDFs, vídeo e áudio).
- Gere saída estruturada (como JSON) com comandos de texto e multimodais.
- Use a chamada de função para conectar modelos generativos a sistemas e informações externas.
Saiba como controlar a geração de conteúdo
- Entenda o design de comandos, incluindo práticas recomendadas, estratégias e exemplos de comandos.
- Configure os parâmetros do modelo, como temperatura e máximo de tokens de saída.
- Use as configurações de segurança para ajustar a probabilidade de receber respostas que podem ser consideradas prejudiciais.
Saiba mais sobre os modelos do Gemini
Saiba mais sobre os modelos disponíveis para vários casos de uso e as cotas e os preços.Enviar feedback sobre sua experiência com o Vertex AI in Firebase