Label images with an AutoML-trained model on Android

After you train your own model using AutoML Vision Edge, you can use it in your app to label images.

There are two ways to integrate models trained from AutoML Vision Edge: You can bundle the model by putting it inside your app’s asset folder, or you can dynamically download it from Firebase.

Model bundling options
Bundled in your app
  • The model is part of your app's APK
  • The model is available immediately, even when the Android device is offline
  • No need for a Firebase project
Hosted with Firebase

Before you begin

  1. Add the dependencies for the ML Kit Android libraries to your module's app-level gradle file, which is usually app/build.gradle:

    For bundling a model with your app:

    dependencies {
      // ...
      // Image labeling feature with bundled automl model
      implementation 'com.google.mlkit:image-labeling-custom:16.3.1'
    }
    

    For dynamically downloading a model from Firebase, add the linkFirebase dependency:

    dependencies {
      // ...
      // Image labeling feature with automl model downloaded
      // from firebase
      implementation 'com.google.mlkit:image-labeling-custom:16.3.1'
      implementation 'com.google.mlkit:linkfirebase:16.1.0'
    }
    
  2. If you want to download a model, make sure you add Firebase to your Android project, if you have not already done so. This is not required when you bundle the model.

1. Load the model

Configure a local model source

To bundle the model with your app:

  1. Extract the model and its metadata from the zip archive you downloaded from Firebase console. We recommend you use the files as you downloaded them, without modification (including the file names).

  2. Include your model and its metadata files in your app package:

    1. If you don't have an assets folder in your project, create one by right-clicking the app/ folder, then clicking New > Folder > Assets Folder.
    2. Create a sub-folder under the assets folder to contain the model files.
    3. Copy the files model.tflite, dict.txt, and manifest.json to the sub-folder (all three files must be in the same folder).
  3. Add the following to your app's build.gradle file to ensure Gradle doesn’t compress the model file when building the app:

    android {
        // ...
        aaptOptions {
            noCompress "tflite"
        }
    }
    

    The model file will be included in the app package and available to ML Kit as a raw asset.

  4. Create LocalModel object, specifying the path to the model manifest file:

    Java

    AutoMLImageLabelerLocalModel localModel =
        new AutoMLImageLabelerLocalModel.Builder()
            .setAssetFilePath("manifest.json")
            // or .setAbsoluteFilePath(absolute file path to manifest file)
            .build();
    

    Kotlin

    val localModel = LocalModel.Builder()
        .setAssetManifestFilePath("manifest.json")
        // or .setAbsoluteManifestFilePath(absolute file path to manifest file)
        .build()
    

Configure a Firebase-hosted model source

To use the remotely-hosted model, create a CustomRemoteModel object, specifying the name you assigned the model when you published it:

Java

// Specify the name you assigned in the Firebase console.
FirebaseModelSource firebaseModelSource =
    new FirebaseModelSource.Builder("your_model_name").build();
CustomRemoteModel remoteModel =
    new CustomRemoteModel.Builder(firebaseModelSource).build();

Kotlin

// Specify the name you assigned in the Firebase console.
val firebaseModelSource = FirebaseModelSource.Builder("your_model_name")
    .build()
val remoteModel = CustomRemoteModel.Builder(firebaseModelSource).build()

Then, start the model download task, specifying the conditions under which you want to allow downloading. If the model isn't on the device, or if a newer version of the model is available, the task will asynchronously download the model from Firebase:

Java

DownloadConditions downloadConditions = new DownloadConditions.Builder()
        .requireWifi()
        .build();
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
        .addOnSuccessListener(new OnSuccessListener<Void>() {
            @Override
            public void onSuccess(@NonNull Task<Void> task) {
                // Success.
            }
        });

Kotlin

val downloadConditions = DownloadConditions.Builder()
    .requireWifi()
    .build()
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
    .addOnSuccessListener {
        // Success.
    }

Many apps start the download task in their initialization code, but you can do so at any point before you need to use the model.

Create an image labeler from your model

After you configure your model sources, create a ImageLabeler object from one of them.

If you only have a locally-bundled model, just create a labeler from your CustomImageLabelerOptions object and configure the confidence score threshold you want to require (see Evaluate your model):

Java

CustomImageLabelerOptions customImageLabelerOptions = new CustomImageLabelerOptions.Builder(localModel)
    .setConfidenceThreshold(0.0f)  // Evaluate your model in the Cloud console
                                   // to determine an appropriate value.
    .build();
ImageLabeler labeler = ImageLabeling.getClient(customImageLabelerOptions);

Kotlin

val customImageLabelerOptions = CustomImageLabelerOptions.Builder(localModel)
    .setConfidenceThreshold(0.0f)  // Evaluate your model in the Cloud console
                                   // to determine an appropriate value.
    .build()
val labeler = ImageLabeling.getClient(customImageLabelerOptions)

If you have a remotely-hosted model, you will have to check that it has been downloaded before you run it. You can check the status of the model download task using the model manager's isModelDownloaded() method.

Although you only have to confirm this before running the labeler, if you have both a remotely-hosted model and a locally-bundled model, it might make sense to perform this check when instantiating the image labeler: create a labeler from the remote model if it's been downloaded, and from the local model otherwise.

Java

RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
        .addOnSuccessListener(new OnSuccessListener<Boolean>() {
            @Override
            public void onSuccess(Boolean isDownloaded) {
                CustomImageLabelerOptions.Builder optionsBuilder;
                if (isDownloaded) {
                    optionsBuilder = new CustomImageLabelerOptions.Builder(remoteModel);
                } else {
                    optionsBuilder = new CustomImageLabelerOptions.Builder(localModel);
                }
                CustomImageLabelerOptions options = optionsBuilder
                        .setConfidenceThreshold(0.0f)  // Evaluate your model in the Cloud console
                                                       // to determine an appropriate threshold.
                        .build();

                ImageLabeler labeler = ImageLabeling.getClient(options);
            }
        });

Kotlin

RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
    .addOnSuccessListener { isDownloaded ->
        val optionsBuilder =
            if (isDownloaded) {
                CustomImageLabelerOptions.Builder(remoteModel)
            } else {
                CustomImageLabelerOptions.Builder(localModel)
            }
        // Evaluate your model in the Cloud console to determine an appropriate threshold.
        val options = optionsBuilder.setConfidenceThreshold(0.0f).build()
        val labeler = ImageLabeling.getClient(options)
}

If you only have a remotely-hosted model, you should disable model-related functionality—for example, grey-out or hide part of your UI—until you confirm the model has been downloaded. You can do so by attaching a listener to the model manager's download() method:

Java

RemoteModelManager.getInstance().download(remoteModel, conditions)
        .addOnSuccessListener(new OnSuccessListener<Void>() {
            @Override
            public void onSuccess(Void v) {
              // Download complete. Depending on your app, you could enable
              // the ML feature, or switch from the local model to the remote
              // model, etc.
            }
        });

Kotlin

RemoteModelManager.getInstance().download(remoteModel, conditions)
    .addOnSuccessListener {
        // Download complete. Depending on your app, you could enable the ML
        // feature, or switch from the local model to the remote model, etc.
    }

2. Prepare the input image

Then, for each image you want to label, create an InputImage object from your image. The image labeler runs fastest when you use a Bitmap or, if you use the camera2 API, a YUV_420_888 media.Image, which are recommended when possible.

You can create an InputImage from different sources, each is explained below.

Using a media.Image

To create an InputImage object from a media.Image object, such as when you capture an image from a device's camera, pass the media.Image object and the image's rotation to InputImage.fromMediaImage().

If you use the CameraX library, the OnImageCapturedListener and ImageAnalysis.Analyzer classes calculate the rotation value for you.

Kotlin+KTX

private class YourImageAnalyzer : ImageAnalysis.Analyzer {
    override fun analyze(imageProxy: ImageProxy?) {
        val mediaImage = imageProxy?.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        if (imageProxy == null || imageProxy.getImage() == null) {
            return;
        }
        Image mediaImage = imageProxy.getImage();
        InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees);
        // Pass image to an ML Kit Vision API
        // ...
    }
}

If you don't use a camera library that gives you the image's rotation degree, you can calculate it from the device's rotation degree and the orientation of camera sensor in the device:

Kotlin+KTX

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 90)
    ORIENTATIONS.append(Surface.ROTATION_90, 0)
    ORIENTATIONS.append(Surface.ROTATION_180, 270)
    ORIENTATIONS.append(Surface.ROTATION_270, 180)
}
/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // On most devices, the sensor orientation is 90 degrees, but for some
    // devices it is 270 degrees. For devices with a sensor orientation of
    // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
    val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
        .getCameraCharacteristics(cameraId)
        .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
    rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360

    // Return the corresponding FirebaseVisionImageMetadata rotation value.
    val result: Int
    when (rotationCompensation) {
        0 -> result = FirebaseVisionImageMetadata.ROTATION_0
        90 -> result = FirebaseVisionImageMetadata.ROTATION_90
        180 -> result = FirebaseVisionImageMetadata.ROTATION_180
        270 -> result = FirebaseVisionImageMetadata.ROTATION_270
        else -> {
            result = FirebaseVisionImageMetadata.ROTATION_0
            Log.e(TAG, "Bad rotation value: $rotationCompensation")
        }
    }
    return result
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 90);
    ORIENTATIONS.append(Surface.ROTATION_90, 0);
    ORIENTATIONS.append(Surface.ROTATION_180, 270);
    ORIENTATIONS.append(Surface.ROTATION_270, 180);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, Context context)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // On most devices, the sensor orientation is 90 degrees, but for some
    // devices it is 270 degrees. For devices with a sensor orientation of
    // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
    CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);
    rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;

    // Return the corresponding FirebaseVisionImageMetadata rotation value.
    int result;
    switch (rotationCompensation) {
        case 0:
            result = FirebaseVisionImageMetadata.ROTATION_0;
            break;
        case 90:
            result = FirebaseVisionImageMetadata.ROTATION_90;
            break;
        case 180:
            result = FirebaseVisionImageMetadata.ROTATION_180;
            break;
        case 270:
            result = FirebaseVisionImageMetadata.ROTATION_270;
            break;
        default:
            result = FirebaseVisionImageMetadata.ROTATION_0;
            Log.e(TAG, "Bad rotation value: " + rotationCompensation);
    }
    return result;
}

Then, pass the media.Image object and the rotation degree value to InputImage.fromMediaImage():

Kotlin+KTX

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Using a file URI

To create an InputImage object from a file URI, pass the app context and file URI to InputImage.fromFilePath(). This is useful when you use an ACTION_GET_CONTENT intent to prompt the user to select an image from their gallery app.

Kotlin+KTX

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Using a ByteBuffer or ByteArray

To create an InputImage object from a ByteBuffer or a ByteArray, first calculate the image rotation degree as previously described for media.Image input. Then, create the InputImage object with the buffer or array, together with image's height, width, color encoding format, and rotation degree:

Kotlin+KTX

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Using a Bitmap

To create an InputImage object from a Bitmap object, make the following declaration:

Kotlin+KTX

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

The image is represented by a Bitmap object together with rotation degrees.

3. Run the image labeler

To label objects in an image, pass the image object to the ImageLabeler's process() method.

Java

labeler.process(image)
        .addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() {
            @Override
            public void onSuccess(List<ImageLabel> labels) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

Kotlin

labeler.process(image)
        .addOnSuccessListener { labels ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

4. Get information about labeled objects

If the image labeling operation succeeds, a list of ImageLabel objects is passed to the success listener. Each ImageLabel object represents something that was labeled in the image. You can get each label's text description, the confidence score of the match and the index of the match. For example:

Java

for (ImageLabel label : labels) {
    String text = label.getText();
    float confidence = label.getConfidence();
    int index = label.getIndex();
}

Kotlin

for (label in labels) {
    val text = label.text
    val confidence = label.confidence
    val index = label.index
}

Tips to improve real-time performance

If you want to label images in a real-time application, follow these guidelines to achieve the best framerates:

  • Throttle calls to the image labeler. If a new video frame becomes available while the image labeler is running, drop the frame. See the VisionProcessorBase class in the quickstart sample app for an example.
  • If you are using the output of the image labeler to overlay graphics on the input image, first get the result, then render the image and overlay in a single step. By doing so, you render to the display surface only once for each input frame. See the CameraSourcePreview and GraphicOverlay classes in the quickstart sample app for an example.
  • If you use the Camera2 API, capture images in ImageFormat.YUV_420_888 format.

    If you use the older Camera API, capture images in ImageFormat.NV21 format.