iOS এ ML কিট দিয়ে ল্যান্ডমার্ক চিনুন

আপনি একটি ছবিতে সুপরিচিত ল্যান্ডমার্ক চিনতে এমএল কিট ব্যবহার করতে পারেন।

আপনি শুরু করার আগে

  1. আপনি যদি ইতিমধ্যে আপনার অ্যাপে Firebase যোগ না করে থাকেন, তাহলে শুরু করার নির্দেশিকাতে দেওয়া ধাপগুলি অনুসরণ করে তা করুন৷
  2. আপনার পডফাইলে এমএল কিট লাইব্রেরি অন্তর্ভুক্ত করুন:
    pod 'Firebase/MLVision', '6.25.0'
    
    আপনি আপনার প্রোজেক্টের পড ইনস্টল বা আপডেট করার পরে, আপনার Xcode প্রোজেক্ট এর .xcworkspace ব্যবহার করে খুলতে ভুলবেন না।
  3. আপনার অ্যাপে, Firebase আমদানি করুন:

    সুইফট

    import Firebase

    উদ্দেশ্য-C

    @import Firebase;
  4. আপনি যদি ইতিমধ্যে আপনার প্রকল্পের জন্য ক্লাউড-ভিত্তিক API সক্ষম না করে থাকেন তবে এখনই তা করুন:

    1. Firebase কনসোলের ML Kit APIs পৃষ্ঠাটি খুলুন।
    2. আপনি যদি ইতিমধ্যেই আপনার প্রোজেক্টকে ব্লেজ প্রাইসিং প্ল্যানে আপগ্রেড না করে থাকেন, তাহলে আপগ্রেড এ ক্লিক করুন। (যদি আপনার প্রকল্পটি ব্লেজ প্ল্যানে না থাকে তবেই আপনাকে আপগ্রেড করার জন্য অনুরোধ করা হবে।)

      শুধুমাত্র ব্লেজ-স্তরের প্রকল্পগুলি ক্লাউড-ভিত্তিক API ব্যবহার করতে পারে।

    3. যদি ক্লাউড-ভিত্তিক APIগুলি ইতিমধ্যে সক্ষম না থাকে, তাহলে ক্লাউড-ভিত্তিক APIগুলি সক্ষম করুন ক্লিক করুন৷

ল্যান্ডমার্ক ডিটেক্টর কনফিগার করুন

ডিফল্টরূপে, ক্লাউড ডিটেক্টর মডেলের স্থিতিশীল সংস্করণ ব্যবহার করে এবং 10টি পর্যন্ত ফলাফল প্রদান করে। আপনি যদি এই সেটিংসগুলির যেকোনো একটি পরিবর্তন করতে চান তবে নিম্নলিখিত উদাহরণের মতো একটি VisionCloudDetectorOptions অবজেক্টের সাথে তাদের নির্দিষ্ট করুন:

সুইফট

let options = VisionCloudDetectorOptions()
options.modelType = .latest
options.maxResults = 20

উদ্দেশ্য-C

  FIRVisionCloudDetectorOptions *options =
      [[FIRVisionCloudDetectorOptions alloc] init];
  options.modelType = FIRVisionCloudModelTypeLatest;
  options.maxResults = 20;
  

পরবর্তী ধাপে, আপনি ক্লাউড ডিটেক্টর অবজেক্ট তৈরি করার সময় VisionCloudDetectorOptions অবজেক্টটি পাস করুন।

ল্যান্ডমার্ক ডিটেক্টর চালান

একটি ছবিতে ল্যান্ডমার্ক চিনতে, ছবিটিকে UIImage বা CMSampleBufferRef হিসেবে VisionCloudLandmarkDetector এর detect(in:) পদ্ধতিতে পাস করুন:

  1. VisionCloudLandmarkDetector এর একটি উদাহরণ পান:

    সুইফট

    lazy var vision = Vision.vision()
    
    let cloudDetector = vision.cloudLandmarkDetector(options: options)
    // Or, to use the default settings:
    // let cloudDetector = vision.cloudLandmarkDetector()
    

    উদ্দেশ্য-C

    FIRVision *vision = [FIRVision vision];
    FIRVisionCloudLandmarkDetector *landmarkDetector = [vision cloudLandmarkDetector];
    // Or, to change the default settings:
    // FIRVisionCloudLandmarkDetector *landmarkDetector =
    //     [vision cloudLandmarkDetectorWithOptions:options];
    
  2. একটি UIImage বা একটি CMSampleBufferRef ব্যবহার করে একটি VisionImage অবজেক্ট তৈরি করুন।

    একটি UIImage ব্যবহার করতে:

    1. প্রয়োজনে, চিত্রটিকে ঘোরান যাতে এটির imageOrientation বৈশিষ্ট্য .up হয়।
    2. সঠিকভাবে ঘোরানো UIImage ব্যবহার করে একটি VisionImage অবজেক্ট তৈরি করুন। কোনো ঘূর্ণন মেটাডেটা নির্দিষ্ট করবেন না—ডিফল্ট মান, .topLeft , ব্যবহার করতে হবে।

      সুইফট

      let image = VisionImage(image: uiImage)

      উদ্দেশ্য-C

      FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];

    একটি CMSampleBufferRef ব্যবহার করতে:

    1. একটি VisionImageMetadata অবজেক্ট তৈরি করুন যা CMSampleBufferRef বাফারে থাকা চিত্র ডেটার অভিযোজন নির্দিষ্ট করে।

      ইমেজ ওরিয়েন্টেশন পেতে:

      সুইফট

      func imageOrientation(
          deviceOrientation: UIDeviceOrientation,
          cameraPosition: AVCaptureDevice.Position
          ) -> VisionDetectorImageOrientation {
          switch deviceOrientation {
          case .portrait:
              return cameraPosition == .front ? .leftTop : .rightTop
          case .landscapeLeft:
              return cameraPosition == .front ? .bottomLeft : .topLeft
          case .portraitUpsideDown:
              return cameraPosition == .front ? .rightBottom : .leftBottom
          case .landscapeRight:
              return cameraPosition == .front ? .topRight : .bottomRight
          case .faceDown, .faceUp, .unknown:
              return .leftTop
          }
      }

      উদ্দেশ্য-C

      - (FIRVisionDetectorImageOrientation)
          imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation
                                 cameraPosition:(AVCaptureDevicePosition)cameraPosition {
        switch (deviceOrientation) {
          case UIDeviceOrientationPortrait:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationLeftTop;
            } else {
              return FIRVisionDetectorImageOrientationRightTop;
            }
          case UIDeviceOrientationLandscapeLeft:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationBottomLeft;
            } else {
              return FIRVisionDetectorImageOrientationTopLeft;
            }
          case UIDeviceOrientationPortraitUpsideDown:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationRightBottom;
            } else {
              return FIRVisionDetectorImageOrientationLeftBottom;
            }
          case UIDeviceOrientationLandscapeRight:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationTopRight;
            } else {
              return FIRVisionDetectorImageOrientationBottomRight;
            }
          default:
            return FIRVisionDetectorImageOrientationTopLeft;
        }
      }

      তারপর, মেটাডেটা অবজেক্ট তৈরি করুন:

      সুইফট

      let cameraPosition = AVCaptureDevice.Position.back  // Set to the capture device you used.
      let metadata = VisionImageMetadata()
      metadata.orientation = imageOrientation(
          deviceOrientation: UIDevice.current.orientation,
          cameraPosition: cameraPosition
      )

      উদ্দেশ্য-C

      FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init];
      AVCaptureDevicePosition cameraPosition =
          AVCaptureDevicePositionBack;  // Set to the capture device you used.
      metadata.orientation =
          [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation
                                       cameraPosition:cameraPosition];
    2. CMSampleBufferRef অবজেক্ট এবং রোটেশন মেটাডেটা ব্যবহার করে একটি VisionImage অবজেক্ট তৈরি করুন:

      সুইফট

      let image = VisionImage(buffer: sampleBuffer)
      image.metadata = metadata

      উদ্দেশ্য-C

      FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:sampleBuffer];
      image.metadata = metadata;
  3. তারপরে, চিত্রটিকে detect(in:) পদ্ধতিতে পাস করুন:

    সুইফট

    cloudDetector.detect(in: visionImage) { landmarks, error in
      guard error == nil, let landmarks = landmarks, !landmarks.isEmpty else {
        // ...
        return
      }
    
      // Recognized landmarks
      // ...
    }
    

    উদ্দেশ্য-C

    [landmarkDetector detectInImage:image
                         completion:^(NSArray<FIRVisionCloudLandmark *> *landmarks,
                                      NSError *error) {
      if (error != nil) {
        return;
      } else if (landmarks != nil) {
        // Got landmarks
      }
    }];
    

স্বীকৃত ল্যান্ডমার্ক সম্পর্কে তথ্য পান

ল্যান্ডমার্ক স্বীকৃতি সফল হলে, VisionCloudLandmark অবজেক্টের একটি অ্যারে সমাপ্তি হ্যান্ডলারের কাছে পাঠানো হবে। প্রতিটি বস্তু থেকে, আপনি ছবিতে স্বীকৃত একটি ল্যান্ডমার্ক সম্পর্কে তথ্য পেতে পারেন।

যেমন:

সুইফট

for landmark in landmarks {
  let landmarkDesc = landmark.landmark
  let boundingPoly = landmark.frame
  let entityId = landmark.entityId

  // A landmark can have multiple locations: for example, the location the image
  // was taken, and the location of the landmark depicted.
  for location in landmark.locations {
    let latitude = location.latitude
    let longitude = location.longitude
  }

  let confidence = landmark.confidence
}

উদ্দেশ্য-C

for (FIRVisionCloudLandmark *landmark in landmarks) {
   NSString *landmarkDesc = landmark.landmark;
   CGRect frame = landmark.frame;
   NSString *entityId = landmark.entityId;

   // A landmark can have multiple locations: for example, the location the image
   // was taken, and the location of the landmark depicted.
   for (FIRVisionLatitudeLongitude *location in landmark.locations) {
     double latitude = [location.latitude doubleValue];
     double longitude = [location.longitude doubleValue];
   }

   float confidence = [landmark.confidence floatValue];
}

পরবর্তী পদক্ষেপ

,

আপনি একটি ছবিতে সুপরিচিত ল্যান্ডমার্ক চিনতে এমএল কিট ব্যবহার করতে পারেন।

আপনি শুরু করার আগে

  1. আপনি যদি ইতিমধ্যে আপনার অ্যাপে Firebase যোগ না করে থাকেন, তাহলে শুরু করার নির্দেশিকাতে দেওয়া ধাপগুলি অনুসরণ করে তা করুন৷
  2. আপনার পডফাইলে এমএল কিট লাইব্রেরি অন্তর্ভুক্ত করুন:
    pod 'Firebase/MLVision', '6.25.0'
    
    আপনি আপনার প্রোজেক্টের পড ইনস্টল বা আপডেট করার পরে, আপনার Xcode প্রোজেক্ট এর .xcworkspace ব্যবহার করে খুলতে ভুলবেন না।
  3. আপনার অ্যাপে, Firebase আমদানি করুন:

    সুইফট

    import Firebase

    উদ্দেশ্য-C

    @import Firebase;
  4. আপনি যদি ইতিমধ্যে আপনার প্রকল্পের জন্য ক্লাউড-ভিত্তিক API সক্ষম না করে থাকেন তবে এখনই তা করুন:

    1. Firebase কনসোলের ML Kit APIs পৃষ্ঠাটি খুলুন।
    2. আপনি যদি ইতিমধ্যেই আপনার প্রোজেক্টকে ব্লেজ প্রাইসিং প্ল্যানে আপগ্রেড না করে থাকেন, তাহলে আপগ্রেড এ ক্লিক করুন। (যদি আপনার প্রকল্পটি ব্লেজ প্ল্যানে না থাকে তবেই আপনাকে আপগ্রেড করার জন্য অনুরোধ করা হবে।)

      শুধুমাত্র ব্লেজ-স্তরের প্রকল্পগুলি ক্লাউড-ভিত্তিক API ব্যবহার করতে পারে।

    3. যদি ক্লাউড-ভিত্তিক APIগুলি ইতিমধ্যে সক্ষম না থাকে, তাহলে ক্লাউড-ভিত্তিক APIগুলি সক্ষম করুন ক্লিক করুন৷

ল্যান্ডমার্ক ডিটেক্টর কনফিগার করুন

ডিফল্টরূপে, ক্লাউড ডিটেক্টর মডেলের স্থিতিশীল সংস্করণ ব্যবহার করে এবং 10টি পর্যন্ত ফলাফল প্রদান করে। আপনি যদি এই সেটিংসগুলির যেকোনো একটি পরিবর্তন করতে চান তবে নিম্নলিখিত উদাহরণের মতো একটি VisionCloudDetectorOptions অবজেক্টের সাথে তাদের নির্দিষ্ট করুন:

সুইফট

let options = VisionCloudDetectorOptions()
options.modelType = .latest
options.maxResults = 20

উদ্দেশ্য-C

  FIRVisionCloudDetectorOptions *options =
      [[FIRVisionCloudDetectorOptions alloc] init];
  options.modelType = FIRVisionCloudModelTypeLatest;
  options.maxResults = 20;
  

পরবর্তী ধাপে, আপনি ক্লাউড ডিটেক্টর অবজেক্ট তৈরি করার সময় VisionCloudDetectorOptions অবজেক্টটি পাস করুন।

ল্যান্ডমার্ক ডিটেক্টর চালান

একটি ছবিতে ল্যান্ডমার্ক চিনতে, ছবিটিকে UIImage বা CMSampleBufferRef হিসেবে VisionCloudLandmarkDetector এর detect(in:) পদ্ধতিতে পাস করুন:

  1. VisionCloudLandmarkDetector এর একটি উদাহরণ পান:

    সুইফট

    lazy var vision = Vision.vision()
    
    let cloudDetector = vision.cloudLandmarkDetector(options: options)
    // Or, to use the default settings:
    // let cloudDetector = vision.cloudLandmarkDetector()
    

    উদ্দেশ্য-C

    FIRVision *vision = [FIRVision vision];
    FIRVisionCloudLandmarkDetector *landmarkDetector = [vision cloudLandmarkDetector];
    // Or, to change the default settings:
    // FIRVisionCloudLandmarkDetector *landmarkDetector =
    //     [vision cloudLandmarkDetectorWithOptions:options];
    
  2. একটি UIImage বা একটি CMSampleBufferRef ব্যবহার করে একটি VisionImage অবজেক্ট তৈরি করুন।

    একটি UIImage ব্যবহার করতে:

    1. প্রয়োজনে, চিত্রটিকে ঘোরান যাতে এটির imageOrientation বৈশিষ্ট্য .up হয়।
    2. সঠিকভাবে ঘোরানো UIImage ব্যবহার করে একটি VisionImage অবজেক্ট তৈরি করুন। কোনো ঘূর্ণন মেটাডেটা নির্দিষ্ট করবেন না—ডিফল্ট মান, .topLeft , ব্যবহার করতে হবে।

      সুইফট

      let image = VisionImage(image: uiImage)

      উদ্দেশ্য-C

      FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];

    একটি CMSampleBufferRef ব্যবহার করতে:

    1. একটি VisionImageMetadata অবজেক্ট তৈরি করুন যা CMSampleBufferRef বাফারে থাকা চিত্র ডেটার অভিযোজন নির্দিষ্ট করে।

      ইমেজ ওরিয়েন্টেশন পেতে:

      সুইফট

      func imageOrientation(
          deviceOrientation: UIDeviceOrientation,
          cameraPosition: AVCaptureDevice.Position
          ) -> VisionDetectorImageOrientation {
          switch deviceOrientation {
          case .portrait:
              return cameraPosition == .front ? .leftTop : .rightTop
          case .landscapeLeft:
              return cameraPosition == .front ? .bottomLeft : .topLeft
          case .portraitUpsideDown:
              return cameraPosition == .front ? .rightBottom : .leftBottom
          case .landscapeRight:
              return cameraPosition == .front ? .topRight : .bottomRight
          case .faceDown, .faceUp, .unknown:
              return .leftTop
          }
      }

      উদ্দেশ্য-C

      - (FIRVisionDetectorImageOrientation)
          imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation
                                 cameraPosition:(AVCaptureDevicePosition)cameraPosition {
        switch (deviceOrientation) {
          case UIDeviceOrientationPortrait:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationLeftTop;
            } else {
              return FIRVisionDetectorImageOrientationRightTop;
            }
          case UIDeviceOrientationLandscapeLeft:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationBottomLeft;
            } else {
              return FIRVisionDetectorImageOrientationTopLeft;
            }
          case UIDeviceOrientationPortraitUpsideDown:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationRightBottom;
            } else {
              return FIRVisionDetectorImageOrientationLeftBottom;
            }
          case UIDeviceOrientationLandscapeRight:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationTopRight;
            } else {
              return FIRVisionDetectorImageOrientationBottomRight;
            }
          default:
            return FIRVisionDetectorImageOrientationTopLeft;
        }
      }

      তারপর, মেটাডেটা অবজেক্ট তৈরি করুন:

      সুইফট

      let cameraPosition = AVCaptureDevice.Position.back  // Set to the capture device you used.
      let metadata = VisionImageMetadata()
      metadata.orientation = imageOrientation(
          deviceOrientation: UIDevice.current.orientation,
          cameraPosition: cameraPosition
      )

      উদ্দেশ্য-C

      FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init];
      AVCaptureDevicePosition cameraPosition =
          AVCaptureDevicePositionBack;  // Set to the capture device you used.
      metadata.orientation =
          [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation
                                       cameraPosition:cameraPosition];
    2. CMSampleBufferRef অবজেক্ট এবং রোটেশন মেটাডেটা ব্যবহার করে একটি VisionImage অবজেক্ট তৈরি করুন:

      সুইফট

      let image = VisionImage(buffer: sampleBuffer)
      image.metadata = metadata

      উদ্দেশ্য-C

      FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:sampleBuffer];
      image.metadata = metadata;
  3. তারপরে, চিত্রটিকে detect(in:) পদ্ধতিতে পাস করুন:

    সুইফট

    cloudDetector.detect(in: visionImage) { landmarks, error in
      guard error == nil, let landmarks = landmarks, !landmarks.isEmpty else {
        // ...
        return
      }
    
      // Recognized landmarks
      // ...
    }
    

    উদ্দেশ্য-C

    [landmarkDetector detectInImage:image
                         completion:^(NSArray<FIRVisionCloudLandmark *> *landmarks,
                                      NSError *error) {
      if (error != nil) {
        return;
      } else if (landmarks != nil) {
        // Got landmarks
      }
    }];
    

স্বীকৃত ল্যান্ডমার্ক সম্পর্কে তথ্য পান

ল্যান্ডমার্ক স্বীকৃতি সফল হলে, VisionCloudLandmark অবজেক্টের একটি অ্যারে সমাপ্তি হ্যান্ডলারের কাছে পাঠানো হবে। প্রতিটি বস্তু থেকে, আপনি ছবিতে স্বীকৃত একটি ল্যান্ডমার্ক সম্পর্কে তথ্য পেতে পারেন।

যেমন:

সুইফট

for landmark in landmarks {
  let landmarkDesc = landmark.landmark
  let boundingPoly = landmark.frame
  let entityId = landmark.entityId

  // A landmark can have multiple locations: for example, the location the image
  // was taken, and the location of the landmark depicted.
  for location in landmark.locations {
    let latitude = location.latitude
    let longitude = location.longitude
  }

  let confidence = landmark.confidence
}

উদ্দেশ্য-C

for (FIRVisionCloudLandmark *landmark in landmarks) {
   NSString *landmarkDesc = landmark.landmark;
   CGRect frame = landmark.frame;
   NSString *entityId = landmark.entityId;

   // A landmark can have multiple locations: for example, the location the image
   // was taken, and the location of the landmark depicted.
   for (FIRVisionLatitudeLongitude *location in landmark.locations) {
     double latitude = [location.latitude doubleValue];
     double longitude = [location.longitude doubleValue];
   }

   float confidence = [landmark.confidence floatValue];
}

পরবর্তী পদক্ষেপ

,

আপনি একটি ছবিতে সুপরিচিত ল্যান্ডমার্ক চিনতে এমএল কিট ব্যবহার করতে পারেন।

আপনি শুরু করার আগে

  1. আপনি যদি ইতিমধ্যে আপনার অ্যাপে Firebase যোগ না করে থাকেন, তাহলে শুরু করার নির্দেশিকাতে দেওয়া ধাপগুলি অনুসরণ করে তা করুন৷
  2. আপনার পডফাইলে এমএল কিট লাইব্রেরি অন্তর্ভুক্ত করুন:
    pod 'Firebase/MLVision', '6.25.0'
    
    আপনি আপনার প্রোজেক্টের পড ইনস্টল বা আপডেট করার পরে, আপনার Xcode প্রোজেক্ট এর .xcworkspace ব্যবহার করে খুলতে ভুলবেন না।
  3. আপনার অ্যাপে, Firebase আমদানি করুন:

    সুইফট

    import Firebase

    উদ্দেশ্য-C

    @import Firebase;
  4. আপনি যদি ইতিমধ্যে আপনার প্রকল্পের জন্য ক্লাউড-ভিত্তিক API সক্ষম না করে থাকেন তবে এখনই তা করুন:

    1. Firebase কনসোলের ML Kit APIs পৃষ্ঠাটি খুলুন।
    2. আপনি যদি ইতিমধ্যেই আপনার প্রোজেক্টকে ব্লেজ প্রাইসিং প্ল্যানে আপগ্রেড না করে থাকেন, তাহলে আপগ্রেড এ ক্লিক করুন। (যদি আপনার প্রকল্পটি ব্লেজ প্ল্যানে না থাকে তবেই আপনাকে আপগ্রেড করার জন্য অনুরোধ করা হবে।)

      শুধুমাত্র ব্লেজ-স্তরের প্রকল্পগুলি ক্লাউড-ভিত্তিক API ব্যবহার করতে পারে।

    3. যদি ক্লাউড-ভিত্তিক APIগুলি ইতিমধ্যে সক্ষম না থাকে, তাহলে ক্লাউড-ভিত্তিক APIগুলি সক্ষম করুন ক্লিক করুন৷

ল্যান্ডমার্ক ডিটেক্টর কনফিগার করুন

ডিফল্টরূপে, ক্লাউড ডিটেক্টর মডেলের স্থিতিশীল সংস্করণ ব্যবহার করে এবং 10টি পর্যন্ত ফলাফল প্রদান করে। আপনি যদি এই সেটিংসগুলির যেকোনো একটি পরিবর্তন করতে চান তবে নিম্নলিখিত উদাহরণের মতো একটি VisionCloudDetectorOptions অবজেক্টের সাথে তাদের নির্দিষ্ট করুন:

সুইফট

let options = VisionCloudDetectorOptions()
options.modelType = .latest
options.maxResults = 20

উদ্দেশ্য-C

  FIRVisionCloudDetectorOptions *options =
      [[FIRVisionCloudDetectorOptions alloc] init];
  options.modelType = FIRVisionCloudModelTypeLatest;
  options.maxResults = 20;
  

পরবর্তী ধাপে, আপনি ক্লাউড ডিটেক্টর অবজেক্ট তৈরি করার সময় VisionCloudDetectorOptions অবজেক্টটি পাস করুন।

ল্যান্ডমার্ক ডিটেক্টর চালান

একটি ছবিতে ল্যান্ডমার্ক চিনতে, ছবিটিকে UIImage বা CMSampleBufferRef হিসেবে VisionCloudLandmarkDetector এর detect(in:) পদ্ধতিতে পাস করুন:

  1. VisionCloudLandmarkDetector এর একটি উদাহরণ পান:

    সুইফট

    lazy var vision = Vision.vision()
    
    let cloudDetector = vision.cloudLandmarkDetector(options: options)
    // Or, to use the default settings:
    // let cloudDetector = vision.cloudLandmarkDetector()
    

    উদ্দেশ্য-C

    FIRVision *vision = [FIRVision vision];
    FIRVisionCloudLandmarkDetector *landmarkDetector = [vision cloudLandmarkDetector];
    // Or, to change the default settings:
    // FIRVisionCloudLandmarkDetector *landmarkDetector =
    //     [vision cloudLandmarkDetectorWithOptions:options];
    
  2. একটি UIImage বা একটি CMSampleBufferRef ব্যবহার করে একটি VisionImage অবজেক্ট তৈরি করুন।

    একটি UIImage ব্যবহার করতে:

    1. প্রয়োজনে, চিত্রটিকে ঘোরান যাতে এটির imageOrientation বৈশিষ্ট্য .up হয়।
    2. সঠিকভাবে ঘোরানো UIImage ব্যবহার করে একটি VisionImage অবজেক্ট তৈরি করুন। কোনো ঘূর্ণন মেটাডেটা নির্দিষ্ট করবেন না—ডিফল্ট মান, .topLeft , ব্যবহার করতে হবে।

      সুইফট

      let image = VisionImage(image: uiImage)

      উদ্দেশ্য-C

      FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];

    একটি CMSampleBufferRef ব্যবহার করতে:

    1. একটি VisionImageMetadata অবজেক্ট তৈরি করুন যা CMSampleBufferRef বাফারে থাকা চিত্র ডেটার অভিযোজন নির্দিষ্ট করে।

      ইমেজ ওরিয়েন্টেশন পেতে:

      সুইফট

      func imageOrientation(
          deviceOrientation: UIDeviceOrientation,
          cameraPosition: AVCaptureDevice.Position
          ) -> VisionDetectorImageOrientation {
          switch deviceOrientation {
          case .portrait:
              return cameraPosition == .front ? .leftTop : .rightTop
          case .landscapeLeft:
              return cameraPosition == .front ? .bottomLeft : .topLeft
          case .portraitUpsideDown:
              return cameraPosition == .front ? .rightBottom : .leftBottom
          case .landscapeRight:
              return cameraPosition == .front ? .topRight : .bottomRight
          case .faceDown, .faceUp, .unknown:
              return .leftTop
          }
      }

      উদ্দেশ্য-C

      - (FIRVisionDetectorImageOrientation)
          imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation
                                 cameraPosition:(AVCaptureDevicePosition)cameraPosition {
        switch (deviceOrientation) {
          case UIDeviceOrientationPortrait:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationLeftTop;
            } else {
              return FIRVisionDetectorImageOrientationRightTop;
            }
          case UIDeviceOrientationLandscapeLeft:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationBottomLeft;
            } else {
              return FIRVisionDetectorImageOrientationTopLeft;
            }
          case UIDeviceOrientationPortraitUpsideDown:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationRightBottom;
            } else {
              return FIRVisionDetectorImageOrientationLeftBottom;
            }
          case UIDeviceOrientationLandscapeRight:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationTopRight;
            } else {
              return FIRVisionDetectorImageOrientationBottomRight;
            }
          default:
            return FIRVisionDetectorImageOrientationTopLeft;
        }
      }

      তারপর, মেটাডেটা অবজেক্ট তৈরি করুন:

      সুইফট

      let cameraPosition = AVCaptureDevice.Position.back  // Set to the capture device you used.
      let metadata = VisionImageMetadata()
      metadata.orientation = imageOrientation(
          deviceOrientation: UIDevice.current.orientation,
          cameraPosition: cameraPosition
      )

      উদ্দেশ্য-C

      FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init];
      AVCaptureDevicePosition cameraPosition =
          AVCaptureDevicePositionBack;  // Set to the capture device you used.
      metadata.orientation =
          [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation
                                       cameraPosition:cameraPosition];
    2. CMSampleBufferRef অবজেক্ট এবং রোটেশন মেটাডেটা ব্যবহার করে একটি VisionImage অবজেক্ট তৈরি করুন:

      সুইফট

      let image = VisionImage(buffer: sampleBuffer)
      image.metadata = metadata

      উদ্দেশ্য-C

      FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:sampleBuffer];
      image.metadata = metadata;
  3. তারপরে, চিত্রটিকে detect(in:) পদ্ধতিতে পাস করুন:

    সুইফট

    cloudDetector.detect(in: visionImage) { landmarks, error in
      guard error == nil, let landmarks = landmarks, !landmarks.isEmpty else {
        // ...
        return
      }
    
      // Recognized landmarks
      // ...
    }
    

    উদ্দেশ্য-C

    [landmarkDetector detectInImage:image
                         completion:^(NSArray<FIRVisionCloudLandmark *> *landmarks,
                                      NSError *error) {
      if (error != nil) {
        return;
      } else if (landmarks != nil) {
        // Got landmarks
      }
    }];
    

স্বীকৃত ল্যান্ডমার্ক সম্পর্কে তথ্য পান

ল্যান্ডমার্ক স্বীকৃতি সফল হলে, VisionCloudLandmark অবজেক্টের একটি অ্যারে সমাপ্তি হ্যান্ডলারের কাছে পাঠানো হবে। প্রতিটি বস্তু থেকে, আপনি ছবিতে স্বীকৃত একটি ল্যান্ডমার্ক সম্পর্কে তথ্য পেতে পারেন।

যেমন:

সুইফট

for landmark in landmarks {
  let landmarkDesc = landmark.landmark
  let boundingPoly = landmark.frame
  let entityId = landmark.entityId

  // A landmark can have multiple locations: for example, the location the image
  // was taken, and the location of the landmark depicted.
  for location in landmark.locations {
    let latitude = location.latitude
    let longitude = location.longitude
  }

  let confidence = landmark.confidence
}

উদ্দেশ্য-C

for (FIRVisionCloudLandmark *landmark in landmarks) {
   NSString *landmarkDesc = landmark.landmark;
   CGRect frame = landmark.frame;
   NSString *entityId = landmark.entityId;

   // A landmark can have multiple locations: for example, the location the image
   // was taken, and the location of the landmark depicted.
   for (FIRVisionLatitudeLongitude *location in landmark.locations) {
     double latitude = [location.latitude doubleValue];
     double longitude = [location.longitude doubleValue];
   }

   float confidence = [landmark.confidence floatValue];
}

পরবর্তী পদক্ষেপ

,

আপনি একটি ছবিতে সুপরিচিত ল্যান্ডমার্ক চিনতে এমএল কিট ব্যবহার করতে পারেন।

আপনি শুরু করার আগে

  1. আপনি যদি ইতিমধ্যে আপনার অ্যাপে Firebase যোগ না করে থাকেন, তাহলে শুরু করার নির্দেশিকাতে দেওয়া ধাপগুলি অনুসরণ করে তা করুন৷
  2. আপনার পডফাইলে এমএল কিট লাইব্রেরি অন্তর্ভুক্ত করুন:
    pod 'Firebase/MLVision', '6.25.0'
    
    আপনি আপনার প্রোজেক্টের পড ইনস্টল বা আপডেট করার পরে, আপনার Xcode প্রোজেক্ট এর .xcworkspace ব্যবহার করে খুলতে ভুলবেন না।
  3. আপনার অ্যাপে, Firebase আমদানি করুন:

    সুইফট

    import Firebase

    উদ্দেশ্য-C

    @import Firebase;
  4. আপনি যদি ইতিমধ্যে আপনার প্রকল্পের জন্য ক্লাউড-ভিত্তিক API সক্ষম না করে থাকেন তবে এখনই তা করুন:

    1. Firebase কনসোলের ML Kit APIs পৃষ্ঠাটি খুলুন।
    2. আপনি যদি ইতিমধ্যেই আপনার প্রোজেক্টকে ব্লেজ প্রাইসিং প্ল্যানে আপগ্রেড না করে থাকেন, তাহলে আপগ্রেড এ ক্লিক করুন। (যদি আপনার প্রকল্পটি ব্লেজ প্ল্যানে না থাকে তবেই আপনাকে আপগ্রেড করার জন্য অনুরোধ করা হবে।)

      শুধুমাত্র ব্লেজ-স্তরের প্রকল্পগুলি ক্লাউড-ভিত্তিক API ব্যবহার করতে পারে।

    3. যদি ক্লাউড-ভিত্তিক APIগুলি ইতিমধ্যে সক্ষম না থাকে, তাহলে ক্লাউড-ভিত্তিক APIগুলি সক্ষম করুন ক্লিক করুন৷

ল্যান্ডমার্ক ডিটেক্টর কনফিগার করুন

ডিফল্টরূপে, ক্লাউড ডিটেক্টর মডেলের স্থিতিশীল সংস্করণ ব্যবহার করে এবং 10টি পর্যন্ত ফলাফল প্রদান করে। আপনি যদি এই সেটিংসগুলির যেকোনো একটি পরিবর্তন করতে চান তবে নিম্নলিখিত উদাহরণের মতো একটি VisionCloudDetectorOptions অবজেক্টের সাথে তাদের নির্দিষ্ট করুন:

সুইফট

let options = VisionCloudDetectorOptions()
options.modelType = .latest
options.maxResults = 20

উদ্দেশ্য-C

  FIRVisionCloudDetectorOptions *options =
      [[FIRVisionCloudDetectorOptions alloc] init];
  options.modelType = FIRVisionCloudModelTypeLatest;
  options.maxResults = 20;
  

পরবর্তী ধাপে, আপনি ক্লাউড ডিটেক্টর অবজেক্ট তৈরি করার সময় VisionCloudDetectorOptions অবজেক্টটি পাস করুন।

ল্যান্ডমার্ক ডিটেক্টর চালান

একটি ছবিতে ল্যান্ডমার্ক চিনতে, ছবিটিকে UIImage বা CMSampleBufferRef হিসেবে VisionCloudLandmarkDetector এর detect(in:) পদ্ধতিতে পাস করুন:

  1. VisionCloudLandmarkDetector এর একটি উদাহরণ পান:

    সুইফট

    lazy var vision = Vision.vision()
    
    let cloudDetector = vision.cloudLandmarkDetector(options: options)
    // Or, to use the default settings:
    // let cloudDetector = vision.cloudLandmarkDetector()
    

    উদ্দেশ্য-C

    FIRVision *vision = [FIRVision vision];
    FIRVisionCloudLandmarkDetector *landmarkDetector = [vision cloudLandmarkDetector];
    // Or, to change the default settings:
    // FIRVisionCloudLandmarkDetector *landmarkDetector =
    //     [vision cloudLandmarkDetectorWithOptions:options];
    
  2. একটি UIImage বা একটি CMSampleBufferRef ব্যবহার করে একটি VisionImage অবজেক্ট তৈরি করুন।

    একটি UIImage ব্যবহার করতে:

    1. প্রয়োজনে, চিত্রটিকে ঘোরান যাতে এটির imageOrientation বৈশিষ্ট্য .up হয়।
    2. সঠিকভাবে ঘোরানো UIImage ব্যবহার করে একটি VisionImage অবজেক্ট তৈরি করুন। কোনো ঘূর্ণন মেটাডেটা নির্দিষ্ট করবেন না—ডিফল্ট মান, .topLeft , ব্যবহার করতে হবে।

      সুইফট

      let image = VisionImage(image: uiImage)

      উদ্দেশ্য-C

      FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];

    একটি CMSampleBufferRef ব্যবহার করতে:

    1. একটি VisionImageMetadata অবজেক্ট তৈরি করুন যা CMSampleBufferRef বাফারে থাকা চিত্র ডেটার অভিযোজন নির্দিষ্ট করে।

      ইমেজ ওরিয়েন্টেশন পেতে:

      সুইফট

      func imageOrientation(
          deviceOrientation: UIDeviceOrientation,
          cameraPosition: AVCaptureDevice.Position
          ) -> VisionDetectorImageOrientation {
          switch deviceOrientation {
          case .portrait:
              return cameraPosition == .front ? .leftTop : .rightTop
          case .landscapeLeft:
              return cameraPosition == .front ? .bottomLeft : .topLeft
          case .portraitUpsideDown:
              return cameraPosition == .front ? .rightBottom : .leftBottom
          case .landscapeRight:
              return cameraPosition == .front ? .topRight : .bottomRight
          case .faceDown, .faceUp, .unknown:
              return .leftTop
          }
      }

      উদ্দেশ্য-C

      - (FIRVisionDetectorImageOrientation)
          imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation
                                 cameraPosition:(AVCaptureDevicePosition)cameraPosition {
        switch (deviceOrientation) {
          case UIDeviceOrientationPortrait:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationLeftTop;
            } else {
              return FIRVisionDetectorImageOrientationRightTop;
            }
          case UIDeviceOrientationLandscapeLeft:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationBottomLeft;
            } else {
              return FIRVisionDetectorImageOrientationTopLeft;
            }
          case UIDeviceOrientationPortraitUpsideDown:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationRightBottom;
            } else {
              return FIRVisionDetectorImageOrientationLeftBottom;
            }
          case UIDeviceOrientationLandscapeRight:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationTopRight;
            } else {
              return FIRVisionDetectorImageOrientationBottomRight;
            }
          default:
            return FIRVisionDetectorImageOrientationTopLeft;
        }
      }

      তারপর, মেটাডেটা অবজেক্ট তৈরি করুন:

      সুইফট

      let cameraPosition = AVCaptureDevice.Position.back  // Set to the capture device you used.
      let metadata = VisionImageMetadata()
      metadata.orientation = imageOrientation(
          deviceOrientation: UIDevice.current.orientation,
          cameraPosition: cameraPosition
      )

      উদ্দেশ্য-C

      FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init];
      AVCaptureDevicePosition cameraPosition =
          AVCaptureDevicePositionBack;  // Set to the capture device you used.
      metadata.orientation =
          [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation
                                       cameraPosition:cameraPosition];
    2. CMSampleBufferRef অবজেক্ট এবং রোটেশন মেটাডেটা ব্যবহার করে একটি VisionImage অবজেক্ট তৈরি করুন:

      সুইফট

      let image = VisionImage(buffer: sampleBuffer)
      image.metadata = metadata

      উদ্দেশ্য-C

      FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:sampleBuffer];
      image.metadata = metadata;
  3. তারপরে, চিত্রটিকে detect(in:) পদ্ধতিতে পাস করুন:

    সুইফট

    cloudDetector.detect(in: visionImage) { landmarks, error in
      guard error == nil, let landmarks = landmarks, !landmarks.isEmpty else {
        // ...
        return
      }
    
      // Recognized landmarks
      // ...
    }
    

    উদ্দেশ্য-C

    [landmarkDetector detectInImage:image
                         completion:^(NSArray<FIRVisionCloudLandmark *> *landmarks,
                                      NSError *error) {
      if (error != nil) {
        return;
      } else if (landmarks != nil) {
        // Got landmarks
      }
    }];
    

স্বীকৃত ল্যান্ডমার্ক সম্পর্কে তথ্য পান

ল্যান্ডমার্ক স্বীকৃতি সফল হলে, VisionCloudLandmark অবজেক্টের একটি অ্যারে সমাপ্তি হ্যান্ডলারের কাছে পাঠানো হবে। প্রতিটি বস্তু থেকে, আপনি ছবিতে স্বীকৃত একটি ল্যান্ডমার্ক সম্পর্কে তথ্য পেতে পারেন।

যেমন:

সুইফট

for landmark in landmarks {
  let landmarkDesc = landmark.landmark
  let boundingPoly = landmark.frame
  let entityId = landmark.entityId

  // A landmark can have multiple locations: for example, the location the image
  // was taken, and the location of the landmark depicted.
  for location in landmark.locations {
    let latitude = location.latitude
    let longitude = location.longitude
  }

  let confidence = landmark.confidence
}

উদ্দেশ্য-C

for (FIRVisionCloudLandmark *landmark in landmarks) {
   NSString *landmarkDesc = landmark.landmark;
   CGRect frame = landmark.frame;
   NSString *entityId = landmark.entityId;

   // A landmark can have multiple locations: for example, the location the image
   // was taken, and the location of the landmark depicted.
   for (FIRVisionLatitudeLongitude *location in landmark.locations) {
     double latitude = [location.latitude doubleValue];
     double longitude = [location.longitude doubleValue];
   }

   float confidence = [landmark.confidence floatValue];
}

পরবর্তী পদক্ষেপ