Você pode usar o Kit de ML para rotular objetos reconhecidos em uma imagem, usando um modelo no dispositivo ou baseado na nuvem. Consulte a visão geral para saber mais sobre os benefícios de cada abordagem.
Antes de começar
- Se você ainda não adicionou o Firebase ao seu app, siga as etapas no guia de iniciação.
- Inclua as bibliotecas do Kit de ML no seu Podfile:
pod 'Firebase/MLVision', '6.25.0'
Depois de instalar ou atualizar os pods do projeto, abra o projeto do Xcode usando o# If using the on-device API: pod 'Firebase/MLVisionLabelModel', '6.25.0'
.xcworkspace
. - Importe o Firebase para seu app:
Swift
import Firebase
Objective-C
@import Firebase;
-
Se você quiser usar o modelo baseado em nuvem e ainda não tiver ativado as APIs baseadas em nuvem para seu projeto, faça isso agora:
- Abra a página APIs do Kit de ML no console do Firebase.
-
Se você ainda não fez o upgrade de seu projeto para um plano de preços do Blaze, clique em Upgrade para fazer isso. Você só vai receber uma mensagem para fazer upgrade se o projeto não estiver no plano Blaze.
Apenas projetos no nível Blaze podem usar APIs baseadas na nuvem.
- Caso as APIs baseadas na nuvem ainda não estejam ativadas, clique em Ativar APIs baseadas na nuvem.
Se você quiser usar apenas o modelo no dispositivo, pule esta etapa.
Agora você já pode rotular imagens usando um modelo no dispositivo ou um modelo baseado na nuvem.
1. Preparar a imagem de entrada
Crie um objeto VisionImage
usando um UIImage
ou um CMSampleBufferRef
.
Para usar um UIImage
:
- Se necessário, gire a imagem para que a propriedade
imageOrientation
seja.up
. - Crie um objeto
VisionImage
usando aUIImage
com a rotação correta. Não especifique metadados de rotação: o valor padrão,.topLeft
, precisa ser usado.Swift
let image = VisionImage(image: uiImage)
Objective-C
FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];
Para usar um CMSampleBufferRef
:
-
Crie um objeto
VisionImageMetadata
que especifique a orientação dos dados da imagem contidos no bufferCMSampleBufferRef
.Para ver a orientação da imagem:
Swift
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> VisionDetectorImageOrientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftTop : .rightTop case .landscapeLeft: return cameraPosition == .front ? .bottomLeft : .topLeft case .portraitUpsideDown: return cameraPosition == .front ? .rightBottom : .leftBottom case .landscapeRight: return cameraPosition == .front ? .topRight : .bottomRight case .faceDown, .faceUp, .unknown: return .leftTop } }
Objective-C
- (FIRVisionDetectorImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationLeftTop; } else { return FIRVisionDetectorImageOrientationRightTop; } case UIDeviceOrientationLandscapeLeft: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationBottomLeft; } else { return FIRVisionDetectorImageOrientationTopLeft; } case UIDeviceOrientationPortraitUpsideDown: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationRightBottom; } else { return FIRVisionDetectorImageOrientationLeftBottom; } case UIDeviceOrientationLandscapeRight: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationTopRight; } else { return FIRVisionDetectorImageOrientationBottomRight; } default: return FIRVisionDetectorImageOrientationTopLeft; } }
Em seguida, crie o objeto de metadados:
Swift
let cameraPosition = AVCaptureDevice.Position.back // Set to the capture device you used. let metadata = VisionImageMetadata() metadata.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition )
Objective-C
FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init]; AVCaptureDevicePosition cameraPosition = AVCaptureDevicePositionBack; // Set to the capture device you used. metadata.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
- Crie um objeto
VisionImage
usando o objetoCMSampleBufferRef
e os metadados de rotação:Swift
let image = VisionImage(buffer: sampleBuffer) image.metadata = metadata
Objective-C
FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:sampleBuffer]; image.metadata = metadata;
2. Configurar e executar o rotulador de imagens
Para rotular objetos em uma imagem, transmita o objetoVisionImage
para o método processImage()
do VisionImageLabeler
.
Primeiro, receba uma instância de
VisionImageLabeler
.Se você quiser usar o rotulador de imagens no dispositivo:
Swift
let labeler = Vision.vision().onDeviceImageLabeler() // Or, to set the minimum confidence required: // let options = VisionOnDeviceImageLabelerOptions() // options.confidenceThreshold = 0.7 // let labeler = Vision.vision().onDeviceImageLabeler(options: options)
Objective-C
FIRVisionImageLabeler *labeler = [[FIRVision vision] onDeviceImageLabeler]; // Or, to set the minimum confidence required: // FIRVisionOnDeviceImageLabelerOptions *options = // [[FIRVisionOnDeviceImageLabelerOptions alloc] init]; // options.confidenceThreshold = 0.7; // FIRVisionImageLabeler *labeler = // [[FIRVision vision] onDeviceImageLabelerWithOptions:options];
Se você quiser usar o rotulador de imagens na nuvem:
Swift
let labeler = Vision.vision().cloudImageLabeler() // Or, to set the minimum confidence required: // let options = VisionCloudImageLabelerOptions() // options.confidenceThreshold = 0.7 // let labeler = Vision.vision().cloudImageLabeler(options: options)
Objective-C
FIRVisionImageLabeler *labeler = [[FIRVision vision] cloudImageLabeler]; // Or, to set the minimum confidence required: // FIRVisionCloudImageLabelerOptions *options = // [[FIRVisionCloudImageLabelerOptions alloc] init]; // options.confidenceThreshold = 0.7; // FIRVisionImageLabeler *labeler = // [[FIRVision vision] cloudImageLabelerWithOptions:options];
Em seguida, transmita a imagem para o método
processImage()
:Swift
labeler.process(image) { labels, error in guard error == nil, let labels = labels else { return } // Task succeeded. // ... }
Objective-C
[labeler processImage:image completion:^(NSArray<FIRVisionImageLabel *> *_Nullable labels, NSError *_Nullable error) { if (error != nil) { return; } // Task succeeded. // ... }];
3. Ver informações sobre os objetos rotulados
Se a rotulagem da imagem for bem-sucedida, uma matriz de objetosVisionImageLabel
será transmitida para o gerenciador de conclusão. É possível obter informações sobre um atributo reconhecido na imagem em cada objeto.
Por exemplo:
Swift
for label in labels {
let labelText = label.text
let entityId = label.entityID
let confidence = label.confidence
}
Objective-C
for (FIRVisionImageLabel *label in labels) {
NSString *labelText = label.text;
NSString *entityId = label.entityID;
NSNumber *confidence = label.confidence;
}
Dicas para melhorar o desempenho em tempo real
Caso você queira rotular imagens em um aplicativo em tempo real, siga estas diretrizes para ter as melhores taxas de frames:
- Limite as chamadas para o rotulador de imagens. Se um novo frame de vídeo estiver disponível enquanto o rotulador de imagens estiver em execução, elimine o frame.
- Se você estiver usando a saída do rotulador de imagens para sobrepor elementos gráficos na imagem de entrada, primeiro acesse o resultado do Kit de ML e, em seguida, renderize a imagem e a sobreposição em uma única etapa. Ao fazer isso, você renderiza a superfície de exibição apenas uma vez para cada frame de entrada. Consulte as classes previewOverlayView e FIRDetectionOverlayView no app de amostra da demonstração para ver um exemplo.
Próximas etapas
- Antes de implantar em produção um app que usa uma API do Cloud, é preciso seguir mais algumas etapas para evitar ou atenuar o efeito do acesso não autorizado à API.