Você pode usar o ML Kit para reconhecer texto em imagens. O ML Kit possui uma API de uso geral adequada para reconhecer texto em imagens, como o texto de uma placa de rua, e uma API otimizada para reconhecer o texto de documentos. A API de uso geral possui modelos no dispositivo e baseados na nuvem. O reconhecimento de texto de documento está disponível apenas como modelo baseado em nuvem. Consulte a visão geral para uma comparação entre os modelos na nuvem e no dispositivo.
Antes de você começar
- Adicione o Firebase ao seu projeto Android , caso ainda não o tenha feito.
- Adicione as dependências das bibliotecas Android do ML Kit ao arquivo Gradle do módulo (nível do aplicativo) (geralmente
app/build.gradle
):apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' }
- Opcional, mas recomendado : se você usar a API no dispositivo, configure seu aplicativo para baixar automaticamente o modelo de ML para o dispositivo depois que seu aplicativo for instalado na Play Store.
Para fazer isso, adicione a seguinte declaração ao arquivo
AndroidManifest.xml
do seu aplicativo:<application ...> ... <meta-data android:name="com.google.firebase.ml.vision.DEPENDENCIES" android:value="ocr" /> <!-- To use multiple models: android:value="ocr,model2,model3" --> </application>
Se você não ativar os downloads do modelo no momento da instalação, o modelo será baixado na primeira vez que você executar o detector no dispositivo. As solicitações feitas antes da conclusão do download não produzirão resultados. Se você quiser usar o modelo baseado em nuvem e ainda não tiver habilitado as APIs baseadas em nuvem para o seu projeto, faça-o agora:
- Abra a página APIs do kit de ML do console do Firebase.
Se você ainda não atualizou seu projeto para um plano de preços Blaze, clique em Atualizar para fazer isso. (Você será solicitado a atualizar somente se o seu projeto não estiver no plano Blaze.)
Somente projetos no nível Blaze podem usar APIs baseadas em nuvem.
- Se as APIs baseadas em nuvem ainda não estiverem habilitadas, clique em Habilitar APIs baseadas em nuvem .
Se quiser usar apenas o modelo no dispositivo, você pode pular esta etapa.
Agora você está pronto para começar a reconhecer texto em imagens.
Diretrizes de imagem de entrada
Para que o ML Kit reconheça o texto com precisão, as imagens de entrada devem conter texto representado por dados de pixel suficientes. Idealmente, para texto latino, cada caractere deve ter pelo menos 16x16 pixels. Para texto em chinês, japonês e coreano (suportado apenas pelas APIs baseadas em nuvem), cada caractere deve ter 24 x 24 pixels. Para todos os idiomas, geralmente não há benefício de precisão se caracteres maiores que 24x24 pixels.
Assim, por exemplo, uma imagem de 640x480 pode funcionar bem para digitalizar um cartão de visita que ocupe toda a largura da imagem. Para digitalizar um documento impresso em papel tamanho carta, pode ser necessária uma imagem de 720x1280 pixels.
O foco inadequado da imagem pode prejudicar a precisão do reconhecimento de texto. Se você não estiver obtendo resultados aceitáveis, tente pedir ao usuário para recapturar a imagem.
Se você estiver reconhecendo texto em um aplicativo em tempo real, também poderá considerar as dimensões gerais das imagens de entrada. Imagens menores podem ser processadas mais rapidamente, portanto, para reduzir a latência, capture imagens em resoluções mais baixas (tendo em mente os requisitos de precisão acima) e garanta que o texto ocupe o máximo possível da imagem. Consulte também Dicas para melhorar o desempenho em tempo real .
Reconhecer texto em imagens
Para reconhecer texto em uma imagem usando um modelo no dispositivo ou baseado em nuvem, execute o reconhecedor de texto conforme descrito abaixo.
1. Execute o reconhecedor de texto
Para reconhecer texto em uma imagem, crie um objetoFirebaseVisionImage
a partir de um Bitmap
, media.Image
, ByteBuffer
, matriz de bytes ou de um arquivo no dispositivo. Em seguida, passe o objeto FirebaseVisionImage
para o método processImage
do FirebaseVisionTextRecognizer
.Crie um objeto
FirebaseVisionImage
a partir da sua imagem.Para criar um objeto
FirebaseVisionImage
a partir de um objetomedia.Image
, como ao capturar uma imagem da câmera de um dispositivo, passe o objetomedia.Image
e a rotação da imagem paraFirebaseVisionImage.fromMediaImage()
.Se você usar a biblioteca CameraX , as classes
OnImageCapturedListener
eImageAnalysis.Analyzer
calcularão o valor de rotação para você, então você só precisa converter a rotação em uma das constantesROTATION_
do kit de ML antes de chamarFirebaseVisionImage.fromMediaImage()
:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
Se você não usa uma biblioteca de câmeras que fornece a rotação da imagem, você pode calculá-la a partir da rotação do dispositivo e da orientação do sensor da câmera no dispositivo:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Em seguida, passe o objeto
media.Image
e o valor de rotação paraFirebaseVisionImage.fromMediaImage()
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- Para criar um objeto
FirebaseVisionImage
a partir de um URI de arquivo, passe o contexto do aplicativo e o URI do arquivo paraFirebaseVisionImage.fromFilePath()
. Isso é útil quando você usa uma intentACTION_GET_CONTENT
para solicitar que o usuário selecione uma imagem do aplicativo de galeria.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- Para criar um objeto
FirebaseVisionImage
a partir de umByteBuffer
ou de uma matriz de bytes, primeiro calcule a rotação da imagem conforme descrito acima para a entradamedia.Image
.Em seguida, crie um objeto
FirebaseVisionImageMetadata
que contenha a altura, a largura, o formato de codificação de cores e a rotação da imagem:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Use o buffer ou array e o objeto de metadados para criar um objeto
FirebaseVisionImage
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- Para criar um objeto
FirebaseVisionImage
a partir de um objetoBitmap
:A imagem representada pelo objetoJava
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
deve estar na vertical, sem necessidade de rotação adicional.
Obtenha uma instância de
FirebaseVisionTextRecognizer
.Para usar o modelo no dispositivo:
Java
FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance() .getOnDeviceTextRecognizer();
Kotlin+KTX
val detector = FirebaseVision.getInstance() .onDeviceTextRecognizer
Para usar o modelo baseado em nuvem:
Java
FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance() .getCloudTextRecognizer(); // Or, to change the default settings: // FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance() // .getCloudTextRecognizer(options);
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages FirebaseVisionCloudTextRecognizerOptions options = new FirebaseVisionCloudTextRecognizerOptions.Builder() .setLanguageHints(Arrays.asList("en", "hi")) .build();
Kotlin+KTX
val detector = FirebaseVision.getInstance().cloudTextRecognizer // Or, to change the default settings: // val detector = FirebaseVision.getInstance().getCloudTextRecognizer(options)
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages val options = FirebaseVisionCloudTextRecognizerOptions.Builder() .setLanguageHints(listOf("en", "hi")) .build()
Por fim, passe a imagem para o método
processImage
:Java
Task<FirebaseVisionText> result = detector.processImage(image) .addOnSuccessListener(new OnSuccessListener<FirebaseVisionText>() { @Override public void onSuccess(FirebaseVisionText firebaseVisionText) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin+KTX
val result = detector.processImage(image) .addOnSuccessListener { firebaseVisionText -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
2. Extraia texto de blocos de texto reconhecidos
Se a operação de reconhecimento de texto for bem-sucedida, um objetoFirebaseVisionText
será transmitido ao listener de sucesso. Um objeto FirebaseVisionText
contém o texto completo reconhecido na imagem e zero ou mais objetos TextBlock
. Cada TextBlock
representa um bloco retangular de texto, que contém zero ou mais objetos Line
. Cada objeto Line
contém zero ou mais objetos Element
, que representam palavras e entidades semelhantes a palavras (datas, números e assim por diante).
Para cada objeto TextBlock
, Line
e Element
, você pode obter o texto reconhecido na região e as coordenadas delimitadoras da região.
Por exemplo:
Java
String resultText = result.getText(); for (FirebaseVisionText.TextBlock block: result.getTextBlocks()) { String blockText = block.getText(); Float blockConfidence = block.getConfidence(); List<RecognizedLanguage> blockLanguages = block.getRecognizedLanguages(); Point[] blockCornerPoints = block.getCornerPoints(); Rect blockFrame = block.getBoundingBox(); for (FirebaseVisionText.Line line: block.getLines()) { String lineText = line.getText(); Float lineConfidence = line.getConfidence(); List<RecognizedLanguage> lineLanguages = line.getRecognizedLanguages(); Point[] lineCornerPoints = line.getCornerPoints(); Rect lineFrame = line.getBoundingBox(); for (FirebaseVisionText.Element element: line.getElements()) { String elementText = element.getText(); Float elementConfidence = element.getConfidence(); List<RecognizedLanguage> elementLanguages = element.getRecognizedLanguages(); Point[] elementCornerPoints = element.getCornerPoints(); Rect elementFrame = element.getBoundingBox(); } } }
Kotlin+KTX
val resultText = result.text for (block in result.textBlocks) { val blockText = block.text val blockConfidence = block.confidence val blockLanguages = block.recognizedLanguages val blockCornerPoints = block.cornerPoints val blockFrame = block.boundingBox for (line in block.lines) { val lineText = line.text val lineConfidence = line.confidence val lineLanguages = line.recognizedLanguages val lineCornerPoints = line.cornerPoints val lineFrame = line.boundingBox for (element in line.elements) { val elementText = element.text val elementConfidence = element.confidence val elementLanguages = element.recognizedLanguages val elementCornerPoints = element.cornerPoints val elementFrame = element.boundingBox } } }
Dicas para melhorar o desempenho em tempo real
Se você quiser usar o modelo no dispositivo para reconhecer texto em um aplicativo em tempo real, siga estas diretrizes para obter as melhores taxas de quadros:
- Limite as chamadas para o reconhecedor de texto. Se um novo quadro de vídeo ficar disponível enquanto o reconhecedor de texto estiver em execução, descarte o quadro.
- Se você estiver usando a saída do reconhecedor de texto para sobrepor gráficos na imagem de entrada, primeiro obtenha o resultado do Kit de ML e, em seguida, renderize a imagem e a sobreposição em uma única etapa. Ao fazer isso, você renderiza na superfície de exibição apenas uma vez para cada quadro de entrada.
Se você usar a API Camera2, capture imagens no formato
ImageFormat.YUV_420_888
.Se você usar a API Camera mais antiga, capture imagens no formato
ImageFormat.NV21
.- Considere capturar imagens com uma resolução mais baixa. No entanto, lembre-se também dos requisitos de dimensão de imagem desta API.
Próximos passos
- Antes de implantar em produção um aplicativo que usa uma API do Cloud, você deve seguir algumas etapas adicionais para evitar e mitigar o efeito do acesso não autorizado à API .
Reconhecer texto em imagens de documentos
Para reconhecer o texto de um documento, configure e execute o reconhecedor de texto de documento baseado em nuvem conforme descrito abaixo.
A API de reconhecimento de texto de documentos, descrita abaixo, fornece uma interface que pretende ser mais conveniente para trabalhar com imagens de documentos. No entanto, se você preferir a interface fornecida pela API FirebaseVisionTextRecognizer
, poderá usá-la para digitalizar documentos configurando o reconhecedor de texto em nuvem para usar o modelo de texto denso .
Para usar a API de reconhecimento de texto de documento:
1. Execute o reconhecedor de texto
Para reconhecer texto em uma imagem, crie um objetoFirebaseVisionImage
a partir de um Bitmap
, media.Image
, ByteBuffer
, matriz de bytes ou de um arquivo no dispositivo. Em seguida, passe o objeto FirebaseVisionImage
para o método processImage
do FirebaseVisionDocumentTextRecognizer
.Crie um objeto
FirebaseVisionImage
a partir da sua imagem.Para criar um objeto
FirebaseVisionImage
a partir de um objetomedia.Image
, como ao capturar uma imagem da câmera de um dispositivo, passe o objetomedia.Image
e a rotação da imagem paraFirebaseVisionImage.fromMediaImage()
.Se você usar a biblioteca CameraX , as classes
OnImageCapturedListener
eImageAnalysis.Analyzer
calcularão o valor de rotação para você, então você só precisa converter a rotação em uma das constantesROTATION_
do kit de ML antes de chamarFirebaseVisionImage.fromMediaImage()
:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
Se você não usa uma biblioteca de câmeras que fornece a rotação da imagem, você pode calculá-la a partir da rotação do dispositivo e da orientação do sensor da câmera no dispositivo:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Em seguida, passe o objeto
media.Image
e o valor de rotação paraFirebaseVisionImage.fromMediaImage()
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- Para criar um objeto
FirebaseVisionImage
a partir de um URI de arquivo, passe o contexto do aplicativo e o URI do arquivo paraFirebaseVisionImage.fromFilePath()
. Isso é útil quando você usa uma intentACTION_GET_CONTENT
para solicitar que o usuário selecione uma imagem do aplicativo de galeria.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- Para criar um objeto
FirebaseVisionImage
a partir de umByteBuffer
ou de uma matriz de bytes, primeiro calcule a rotação da imagem conforme descrito acima para a entradamedia.Image
.Em seguida, crie um objeto
FirebaseVisionImageMetadata
que contenha a altura, a largura, o formato de codificação de cores e a rotação da imagem:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Use o buffer ou array e o objeto de metadados para criar um objeto
FirebaseVisionImage
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- Para criar um objeto
FirebaseVisionImage
a partir de um objetoBitmap
:A imagem representada pelo objetoJava
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
deve estar na vertical, sem necessidade de rotação adicional.
Obtenha uma instância de
FirebaseVisionDocumentTextRecognizer
:Java
FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance() .getCloudDocumentTextRecognizer();
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages FirebaseVisionCloudDocumentRecognizerOptions options = new FirebaseVisionCloudDocumentRecognizerOptions.Builder() .setLanguageHints(Arrays.asList("en", "hi")) .build(); FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance() .getCloudDocumentTextRecognizer(options);
Kotlin+KTX
val detector = FirebaseVision.getInstance() .cloudDocumentTextRecognizer
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages val options = FirebaseVisionCloudDocumentRecognizerOptions.Builder() .setLanguageHints(listOf("en", "hi")) .build() val detector = FirebaseVision.getInstance() .getCloudDocumentTextRecognizer(options)
Por fim, passe a imagem para o método
processImage
:Java
detector.processImage(myImage) .addOnSuccessListener(new OnSuccessListener<FirebaseVisionDocumentText>() { @Override public void onSuccess(FirebaseVisionDocumentText result) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin+KTX
detector.processImage(myImage) .addOnSuccessListener { firebaseVisionDocumentText -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
2. Extraia texto de blocos de texto reconhecidos
Se a operação de reconhecimento de texto for bem-sucedida, ela retornará um objeto FirebaseVisionDocumentText
. Um objeto FirebaseVisionDocumentText
contém o texto completo reconhecido na imagem e uma hierarquia de objetos que refletem a estrutura do documento reconhecido:
-
FirebaseVisionDocumentText.Block
-
FirebaseVisionDocumentText.Paragraph
-
FirebaseVisionDocumentText.Word
-
FirebaseVisionDocumentText.Symbol
Para cada objeto Block
, Paragraph
, Word
e Symbol
, você pode obter o texto reconhecido na região e as coordenadas delimitadoras da região.
Por exemplo:
Java
String resultText = result.getText(); for (FirebaseVisionDocumentText.Block block: result.getBlocks()) { String blockText = block.getText(); Float blockConfidence = block.getConfidence(); List<RecognizedLanguage> blockRecognizedLanguages = block.getRecognizedLanguages(); Rect blockFrame = block.getBoundingBox(); for (FirebaseVisionDocumentText.Paragraph paragraph: block.getParagraphs()) { String paragraphText = paragraph.getText(); Float paragraphConfidence = paragraph.getConfidence(); List<RecognizedLanguage> paragraphRecognizedLanguages = paragraph.getRecognizedLanguages(); Rect paragraphFrame = paragraph.getBoundingBox(); for (FirebaseVisionDocumentText.Word word: paragraph.getWords()) { String wordText = word.getText(); Float wordConfidence = word.getConfidence(); List<RecognizedLanguage> wordRecognizedLanguages = word.getRecognizedLanguages(); Rect wordFrame = word.getBoundingBox(); for (FirebaseVisionDocumentText.Symbol symbol: word.getSymbols()) { String symbolText = symbol.getText(); Float symbolConfidence = symbol.getConfidence(); List<RecognizedLanguage> symbolRecognizedLanguages = symbol.getRecognizedLanguages(); Rect symbolFrame = symbol.getBoundingBox(); } } } }
Kotlin+KTX
val resultText = result.text for (block in result.blocks) { val blockText = block.text val blockConfidence = block.confidence val blockRecognizedLanguages = block.recognizedLanguages val blockFrame = block.boundingBox for (paragraph in block.paragraphs) { val paragraphText = paragraph.text val paragraphConfidence = paragraph.confidence val paragraphRecognizedLanguages = paragraph.recognizedLanguages val paragraphFrame = paragraph.boundingBox for (word in paragraph.words) { val wordText = word.text val wordConfidence = word.confidence val wordRecognizedLanguages = word.recognizedLanguages val wordFrame = word.boundingBox for (symbol in word.symbols) { val symbolText = symbol.text val symbolConfidence = symbol.confidence val symbolRecognizedLanguages = symbol.recognizedLanguages val symbolFrame = symbol.boundingBox } } } }
Próximos passos
- Antes de implantar em produção um aplicativo que usa uma API do Cloud, você deve seguir algumas etapas adicionais para evitar e mitigar o efeito do acesso não autorizado à API .