Reconhecer texto em imagens com kit de ML no Android

Você pode usar o ML Kit para reconhecer texto em imagens. O ML Kit possui uma API de uso geral adequada para reconhecer texto em imagens, como o texto de uma placa de rua, e uma API otimizada para reconhecer o texto de documentos. A API de uso geral possui modelos no dispositivo e baseados na nuvem. O reconhecimento de texto de documento está disponível apenas como modelo baseado em nuvem. Consulte a visão geral para uma comparação entre os modelos na nuvem e no dispositivo.

Antes de você começar

  1. Adicione o Firebase ao seu projeto Android , caso ainda não o tenha feito.
  2. Adicione as dependências das bibliotecas Android do ML Kit ao arquivo Gradle do módulo (nível do aplicativo) (geralmente app/build.gradle ):
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
    }
    
  3. Opcional, mas recomendado : se você usar a API no dispositivo, configure seu aplicativo para baixar automaticamente o modelo de ML para o dispositivo depois que seu aplicativo for instalado na Play Store.

    Para fazer isso, adicione a seguinte declaração ao arquivo AndroidManifest.xml do seu aplicativo:

    <application ...>
      ...
      <meta-data
          android:name="com.google.firebase.ml.vision.DEPENDENCIES"
          android:value="ocr" />
      <!-- To use multiple models: android:value="ocr,model2,model3" -->
    </application>
    
    Se você não ativar os downloads do modelo no momento da instalação, o modelo será baixado na primeira vez que você executar o detector no dispositivo. As solicitações feitas antes da conclusão do download não produzirão resultados.
  4. Se você quiser usar o modelo baseado em nuvem e ainda não tiver habilitado as APIs baseadas em nuvem para o seu projeto, faça-o agora:

    1. Abra a página APIs do kit de ML do console do Firebase.
    2. Se você ainda não atualizou seu projeto para um plano de preços Blaze, clique em Atualizar para fazer isso. (Você será solicitado a atualizar somente se o seu projeto não estiver no plano Blaze.)

      Somente projetos no nível Blaze podem usar APIs baseadas em nuvem.

    3. Se as APIs baseadas em nuvem ainda não estiverem habilitadas, clique em Habilitar APIs baseadas em nuvem .

    Se quiser usar apenas o modelo no dispositivo, você pode pular esta etapa.

Agora você está pronto para começar a reconhecer texto em imagens.

Diretrizes de imagem de entrada

  • Para que o ML Kit reconheça o texto com precisão, as imagens de entrada devem conter texto representado por dados de pixel suficientes. Idealmente, para texto latino, cada caractere deve ter pelo menos 16x16 pixels. Para texto em chinês, japonês e coreano (suportado apenas pelas APIs baseadas em nuvem), cada caractere deve ter 24 x 24 pixels. Para todos os idiomas, geralmente não há benefício de precisão se caracteres maiores que 24x24 pixels.

    Assim, por exemplo, uma imagem de 640x480 pode funcionar bem para digitalizar um cartão de visita que ocupe toda a largura da imagem. Para digitalizar um documento impresso em papel tamanho carta, pode ser necessária uma imagem de 720x1280 pixels.

  • O foco inadequado da imagem pode prejudicar a precisão do reconhecimento de texto. Se você não estiver obtendo resultados aceitáveis, tente pedir ao usuário para recapturar a imagem.

  • Se você estiver reconhecendo texto em um aplicativo em tempo real, também poderá considerar as dimensões gerais das imagens de entrada. Imagens menores podem ser processadas mais rapidamente, portanto, para reduzir a latência, capture imagens em resoluções mais baixas (tendo em mente os requisitos de precisão acima) e garanta que o texto ocupe o máximo possível da imagem. Consulte também Dicas para melhorar o desempenho em tempo real .


Reconhecer texto em imagens

Para reconhecer texto em uma imagem usando um modelo no dispositivo ou baseado em nuvem, execute o reconhecedor de texto conforme descrito abaixo.

1. Execute o reconhecedor de texto

Para reconhecer texto em uma imagem, crie um objeto FirebaseVisionImage a partir de um Bitmap , media.Image , ByteBuffer , matriz de bytes ou de um arquivo no dispositivo. Em seguida, passe o objeto FirebaseVisionImage para o método processImage do FirebaseVisionTextRecognizer .

  1. Crie um objeto FirebaseVisionImage a partir da sua imagem.

    • Para criar um objeto FirebaseVisionImage a partir de um objeto media.Image , como ao capturar uma imagem da câmera de um dispositivo, passe o objeto media.Image e a rotação da imagem para FirebaseVisionImage.fromMediaImage() .

      Se você usar a biblioteca CameraX , as classes OnImageCapturedListener e ImageAnalysis.Analyzer calcularão o valor de rotação para você, então você só precisa converter a rotação em uma das constantes ROTATION_ do kit de ML antes de chamar FirebaseVisionImage.fromMediaImage() :

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }
      

      Kotlin+KTX

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }
      

      Se você não usa uma biblioteca de câmeras que fornece a rotação da imagem, você pode calculá-la a partir da rotação do dispositivo e da orientação do sensor da câmera no dispositivo:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin+KTX

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Em seguida, passe o objeto media.Image e o valor de rotação para FirebaseVisionImage.fromMediaImage() :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • Para criar um objeto FirebaseVisionImage a partir de um URI de arquivo, passe o contexto do aplicativo e o URI do arquivo para FirebaseVisionImage.fromFilePath() . Isso é útil quando você usa uma intent ACTION_GET_CONTENT para solicitar que o usuário selecione uma imagem do aplicativo de galeria.

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin+KTX

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • Para criar um objeto FirebaseVisionImage a partir de um ByteBuffer ou de uma matriz de bytes, primeiro calcule a rotação da imagem conforme descrito acima para a entrada media.Image .

      Em seguida, crie um objeto FirebaseVisionImageMetadata que contenha a altura, a largura, o formato de codificação de cores e a rotação da imagem:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin+KTX

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      Use o buffer ou array e o objeto de metadados para criar um objeto FirebaseVisionImage :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • Para criar um objeto FirebaseVisionImage a partir de um objeto Bitmap :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      A imagem representada pelo objeto Bitmap deve estar na vertical, sem necessidade de rotação adicional.

  2. Obtenha uma instância de FirebaseVisionTextRecognizer .

    Para usar o modelo no dispositivo:

    Java

    FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
            .getOnDeviceTextRecognizer();

    Kotlin+KTX

    val detector = FirebaseVision.getInstance()
            .onDeviceTextRecognizer

    Para usar o modelo baseado em nuvem:

    Java

    FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudTextRecognizer();
    // Or, to change the default settings:
    //   FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
    //          .getCloudTextRecognizer(options);
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FirebaseVisionCloudTextRecognizerOptions options = new FirebaseVisionCloudTextRecognizerOptions.Builder()
            .setLanguageHints(Arrays.asList("en", "hi"))
            .build();
    

    Kotlin+KTX

    val detector = FirebaseVision.getInstance().cloudTextRecognizer
    // Or, to change the default settings:
    // val detector = FirebaseVision.getInstance().getCloudTextRecognizer(options)
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    val options = FirebaseVisionCloudTextRecognizerOptions.Builder()
            .setLanguageHints(listOf("en", "hi"))
            .build()
    
  3. Por fim, passe a imagem para o método processImage :

    Java

    Task<FirebaseVisionText> result =
            detector.processImage(image)
                    .addOnSuccessListener(new OnSuccessListener<FirebaseVisionText>() {
                        @Override
                        public void onSuccess(FirebaseVisionText firebaseVisionText) {
                            // Task completed successfully
                            // ...
                        }
                    })
                    .addOnFailureListener(
                            new OnFailureListener() {
                                @Override
                                public void onFailure(@NonNull Exception e) {
                                    // Task failed with an exception
                                    // ...
                                }
                            });

    Kotlin+KTX

    val result = detector.processImage(image)
            .addOnSuccessListener { firebaseVisionText ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener { e ->
                // Task failed with an exception
                // ...
            }

2. Extraia texto de blocos de texto reconhecidos

Se a operação de reconhecimento de texto for bem-sucedida, um objeto FirebaseVisionText será transmitido ao listener de sucesso. Um objeto FirebaseVisionText contém o texto completo reconhecido na imagem e zero ou mais objetos TextBlock .

Cada TextBlock representa um bloco retangular de texto, que contém zero ou mais objetos Line . Cada objeto Line contém zero ou mais objetos Element , que representam palavras e entidades semelhantes a palavras (datas, números e assim por diante).

Para cada objeto TextBlock , Line e Element , você pode obter o texto reconhecido na região e as coordenadas delimitadoras da região.

Por exemplo:

Java

String resultText = result.getText();
for (FirebaseVisionText.TextBlock block: result.getTextBlocks()) {
    String blockText = block.getText();
    Float blockConfidence = block.getConfidence();
    List<RecognizedLanguage> blockLanguages = block.getRecognizedLanguages();
    Point[] blockCornerPoints = block.getCornerPoints();
    Rect blockFrame = block.getBoundingBox();
    for (FirebaseVisionText.Line line: block.getLines()) {
        String lineText = line.getText();
        Float lineConfidence = line.getConfidence();
        List<RecognizedLanguage> lineLanguages = line.getRecognizedLanguages();
        Point[] lineCornerPoints = line.getCornerPoints();
        Rect lineFrame = line.getBoundingBox();
        for (FirebaseVisionText.Element element: line.getElements()) {
            String elementText = element.getText();
            Float elementConfidence = element.getConfidence();
            List<RecognizedLanguage> elementLanguages = element.getRecognizedLanguages();
            Point[] elementCornerPoints = element.getCornerPoints();
            Rect elementFrame = element.getBoundingBox();
        }
    }
}

Kotlin+KTX

val resultText = result.text
for (block in result.textBlocks) {
    val blockText = block.text
    val blockConfidence = block.confidence
    val blockLanguages = block.recognizedLanguages
    val blockCornerPoints = block.cornerPoints
    val blockFrame = block.boundingBox
    for (line in block.lines) {
        val lineText = line.text
        val lineConfidence = line.confidence
        val lineLanguages = line.recognizedLanguages
        val lineCornerPoints = line.cornerPoints
        val lineFrame = line.boundingBox
        for (element in line.elements) {
            val elementText = element.text
            val elementConfidence = element.confidence
            val elementLanguages = element.recognizedLanguages
            val elementCornerPoints = element.cornerPoints
            val elementFrame = element.boundingBox
        }
    }
}

Dicas para melhorar o desempenho em tempo real

Se você quiser usar o modelo no dispositivo para reconhecer texto em um aplicativo em tempo real, siga estas diretrizes para obter as melhores taxas de quadros:

  • Limite as chamadas para o reconhecedor de texto. Se um novo quadro de vídeo ficar disponível enquanto o reconhecedor de texto estiver em execução, descarte o quadro.
  • Se você estiver usando a saída do reconhecedor de texto para sobrepor gráficos na imagem de entrada, primeiro obtenha o resultado do Kit de ML e, em seguida, renderize a imagem e a sobreposição em uma única etapa. Ao fazer isso, você renderiza na superfície de exibição apenas uma vez para cada quadro de entrada.
  • Se você usar a API Camera2, capture imagens no formato ImageFormat.YUV_420_888 .

    Se você usar a API Camera mais antiga, capture imagens no formato ImageFormat.NV21 .

  • Considere capturar imagens com uma resolução mais baixa. No entanto, lembre-se também dos requisitos de dimensão de imagem desta API.

Próximos passos


Reconhecer texto em imagens de documentos

Para reconhecer o texto de um documento, configure e execute o reconhecedor de texto de documento baseado em nuvem conforme descrito abaixo.

A API de reconhecimento de texto de documentos, descrita abaixo, fornece uma interface que pretende ser mais conveniente para trabalhar com imagens de documentos. No entanto, se você preferir a interface fornecida pela API FirebaseVisionTextRecognizer , poderá usá-la para digitalizar documentos configurando o reconhecedor de texto em nuvem para usar o modelo de texto denso .

Para usar a API de reconhecimento de texto de documento:

1. Execute o reconhecedor de texto

Para reconhecer texto em uma imagem, crie um objeto FirebaseVisionImage a partir de um Bitmap , media.Image , ByteBuffer , matriz de bytes ou de um arquivo no dispositivo. Em seguida, passe o objeto FirebaseVisionImage para o método processImage do FirebaseVisionDocumentTextRecognizer .

  1. Crie um objeto FirebaseVisionImage a partir da sua imagem.

    • Para criar um objeto FirebaseVisionImage a partir de um objeto media.Image , como ao capturar uma imagem da câmera de um dispositivo, passe o objeto media.Image e a rotação da imagem para FirebaseVisionImage.fromMediaImage() .

      Se você usar a biblioteca CameraX , as classes OnImageCapturedListener e ImageAnalysis.Analyzer calcularão o valor de rotação para você, então você só precisa converter a rotação em uma das constantes ROTATION_ do kit de ML antes de chamar FirebaseVisionImage.fromMediaImage() :

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }
      

      Kotlin+KTX

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }
      

      Se você não usa uma biblioteca de câmeras que fornece a rotação da imagem, você pode calculá-la a partir da rotação do dispositivo e da orientação do sensor da câmera no dispositivo:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin+KTX

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Em seguida, passe o objeto media.Image e o valor de rotação para FirebaseVisionImage.fromMediaImage() :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • Para criar um objeto FirebaseVisionImage a partir de um URI de arquivo, passe o contexto do aplicativo e o URI do arquivo para FirebaseVisionImage.fromFilePath() . Isso é útil quando você usa uma intent ACTION_GET_CONTENT para solicitar que o usuário selecione uma imagem do aplicativo de galeria.

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin+KTX

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • Para criar um objeto FirebaseVisionImage a partir de um ByteBuffer ou de uma matriz de bytes, primeiro calcule a rotação da imagem conforme descrito acima para a entrada media.Image .

      Em seguida, crie um objeto FirebaseVisionImageMetadata que contenha a altura, a largura, o formato de codificação de cores e a rotação da imagem:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin+KTX

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      Use o buffer ou array e o objeto de metadados para criar um objeto FirebaseVisionImage :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • Para criar um objeto FirebaseVisionImage a partir de um objeto Bitmap :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      A imagem representada pelo objeto Bitmap deve estar na vertical, sem necessidade de rotação adicional.

  2. Obtenha uma instância de FirebaseVisionDocumentTextRecognizer :

    Java

    FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer();
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FirebaseVisionCloudDocumentRecognizerOptions options =
            new FirebaseVisionCloudDocumentRecognizerOptions.Builder()
                    .setLanguageHints(Arrays.asList("en", "hi"))
                    .build();
    FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer(options);

    Kotlin+KTX

    val detector = FirebaseVision.getInstance()
            .cloudDocumentTextRecognizer
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    val options = FirebaseVisionCloudDocumentRecognizerOptions.Builder()
            .setLanguageHints(listOf("en", "hi"))
            .build()
    val detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer(options)

  3. Por fim, passe a imagem para o método processImage :

    Java

    detector.processImage(myImage)
            .addOnSuccessListener(new OnSuccessListener<FirebaseVisionDocumentText>() {
                @Override
                public void onSuccess(FirebaseVisionDocumentText result) {
                    // Task completed successfully
                    // ...
                }
            })
            .addOnFailureListener(new OnFailureListener() {
                @Override
                public void onFailure(@NonNull Exception e) {
                    // Task failed with an exception
                    // ...
                }
            });

    Kotlin+KTX

    detector.processImage(myImage)
            .addOnSuccessListener { firebaseVisionDocumentText ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener { e ->
                // Task failed with an exception
                // ...
            }

2. Extraia texto de blocos de texto reconhecidos

Se a operação de reconhecimento de texto for bem-sucedida, ela retornará um objeto FirebaseVisionDocumentText . Um objeto FirebaseVisionDocumentText contém o texto completo reconhecido na imagem e uma hierarquia de objetos que refletem a estrutura do documento reconhecido:

Para cada objeto Block , Paragraph , Word e Symbol , você pode obter o texto reconhecido na região e as coordenadas delimitadoras da região.

Por exemplo:

Java

String resultText = result.getText();
for (FirebaseVisionDocumentText.Block block: result.getBlocks()) {
    String blockText = block.getText();
    Float blockConfidence = block.getConfidence();
    List<RecognizedLanguage> blockRecognizedLanguages = block.getRecognizedLanguages();
    Rect blockFrame = block.getBoundingBox();
    for (FirebaseVisionDocumentText.Paragraph paragraph: block.getParagraphs()) {
        String paragraphText = paragraph.getText();
        Float paragraphConfidence = paragraph.getConfidence();
        List<RecognizedLanguage> paragraphRecognizedLanguages = paragraph.getRecognizedLanguages();
        Rect paragraphFrame = paragraph.getBoundingBox();
        for (FirebaseVisionDocumentText.Word word: paragraph.getWords()) {
            String wordText = word.getText();
            Float wordConfidence = word.getConfidence();
            List<RecognizedLanguage> wordRecognizedLanguages = word.getRecognizedLanguages();
            Rect wordFrame = word.getBoundingBox();
            for (FirebaseVisionDocumentText.Symbol symbol: word.getSymbols()) {
                String symbolText = symbol.getText();
                Float symbolConfidence = symbol.getConfidence();
                List<RecognizedLanguage> symbolRecognizedLanguages = symbol.getRecognizedLanguages();
                Rect symbolFrame = symbol.getBoundingBox();
            }
        }
    }
}

Kotlin+KTX

val resultText = result.text
for (block in result.blocks) {
    val blockText = block.text
    val blockConfidence = block.confidence
    val blockRecognizedLanguages = block.recognizedLanguages
    val blockFrame = block.boundingBox
    for (paragraph in block.paragraphs) {
        val paragraphText = paragraph.text
        val paragraphConfidence = paragraph.confidence
        val paragraphRecognizedLanguages = paragraph.recognizedLanguages
        val paragraphFrame = paragraph.boundingBox
        for (word in paragraph.words) {
            val wordText = word.text
            val wordConfidence = word.confidence
            val wordRecognizedLanguages = word.recognizedLanguages
            val wordFrame = word.boundingBox
            for (symbol in word.symbols) {
                val symbolText = symbol.text
                val symbolConfidence = symbol.confidence
                val symbolRecognizedLanguages = symbol.recognizedLanguages
                val symbolFrame = symbol.boundingBox
            }
        }
    }
}

Próximos passos