আপনি ছবি এবং ভিডিওতে মুখ সনাক্ত করতে ML কিট ব্যবহার করতে পারেন।
আপনি শুরু করার আগে
- যদি আপনি ইতিমধ্যেই না করে থাকেন তাহলে আপনার Android প্রকল্পে Firebase যোগ করুন ।
- আপনার মডিউল (অ্যাপ-লেভেল) গ্রেডল ফাইলে (সাধারণত
app/build.gradle
) ML কিট অ্যান্ড্রয়েড লাইব্রেরির নির্ভরতা যুক্ত করুন :apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' // If you want to detect face contours (landmark detection and classification // don't require this additional model): implementation 'com.google.firebase:firebase-ml-vision-face-model:20.0.1' }
- ঐচ্ছিক কিন্তু প্রস্তাবিত : প্লে স্টোর থেকে আপনার অ্যাপ ইনস্টল করার পরে ডিভাইসে স্বয়ংক্রিয়ভাবে ML মডেল ডাউনলোড করতে আপনার অ্যাপ কনফিগার করুন।
এটি করতে, আপনার অ্যাপের
AndroidManifest.xml
ফাইলে নিম্নলিখিত ঘোষণা যোগ করুন:<application ...> ... <meta-data android:name="com.google.firebase.ml.vision.DEPENDENCIES" android:value="face" /> <!-- To use multiple models: android:value="face,model2,model3" --> </application>
আপনি যদি ইনস্টল-টাইম মডেল ডাউনলোডগুলি সক্ষম না করেন, আপনি প্রথমবার ডিটেক্টর চালানোর সময় মডেলটি ডাউনলোড করা হবে৷ ডাউনলোড শেষ হওয়ার আগে আপনি যে অনুরোধগুলি করেন সেগুলি কোনও ফলাফল দেবে না।
ইনপুট ইমেজ নির্দেশিকা
ML Kit সঠিকভাবে মুখ সনাক্ত করতে, ইনপুট চিত্রগুলিতে পর্যাপ্ত পিক্সেল ডেটা দ্বারা প্রতিনিধিত্ব করা মুখগুলি থাকতে হবে৷ সাধারণভাবে, আপনি একটি ছবিতে সনাক্ত করতে চান এমন প্রতিটি মুখ কমপক্ষে 100x100 পিক্সেল হওয়া উচিত। আপনি যদি মুখের কনট্যুরগুলি সনাক্ত করতে চান, এমএল কিটের উচ্চ রেজোলিউশন ইনপুট প্রয়োজন: প্রতিটি মুখ কমপক্ষে 200x200 পিক্সেল হওয়া উচিত।
আপনি যদি একটি রিয়েল-টাইম অ্যাপ্লিকেশনে মুখগুলি সনাক্ত করেন তবে আপনি ইনপুট চিত্রগুলির সামগ্রিক মাত্রাগুলিও বিবেচনা করতে চাইতে পারেন৷ ছোট ছবিগুলি দ্রুত প্রক্রিয়া করা যেতে পারে, তাই লেটেন্সি কমাতে, কম রেজোলিউশনে ছবিগুলি ক্যাপচার করুন (উপরের নির্ভুলতার প্রয়োজনীয়তাগুলি মনে রেখে) এবং নিশ্চিত করুন যে বিষয়ের মুখ যতটা সম্ভব ছবিটি দখল করে। এছাড়াও রিয়েল-টাইম কর্মক্ষমতা উন্নত করার টিপস দেখুন।
খারাপ ছবির ফোকাস নির্ভুলতা ক্ষতি করতে পারে. আপনি যদি গ্রহণযোগ্য ফলাফল না পান, তাহলে ব্যবহারকারীকে ছবিটি পুনরায় ক্যাপচার করতে বলার চেষ্টা করুন।
ক্যামেরার সাপেক্ষে একটি মুখের অভিযোজন ML কিট মুখের বৈশিষ্ট্যগুলিকেও প্রভাবিত করতে পারে৷ মুখ সনাক্তকরণ ধারণা দেখুন।
1. ফেস ডিটেক্টর কনফিগার করুন
আপনি একটি ছবিতে মুখ সনাক্তকরণ প্রয়োগ করার আগে, আপনি যদি ফেস ডিটেক্টরের ডিফল্ট সেটিংস পরিবর্তন করতে চান তবে একটিFirebaseVisionFaceDetectorOptions
অবজেক্টের সাথে সেই সেটিংস নির্দিষ্ট করুন৷ আপনি নিম্নলিখিত সেটিংস পরিবর্তন করতে পারেন:সেটিংস | |
---|---|
কর্মক্ষমতা মোড | FAST (ডিফল্ট) | ACCURATE মুখ সনাক্ত করার সময় গতি বা নির্ভুলতার পক্ষে। |
ল্যান্ডমার্ক সনাক্ত করুন | NO_LANDMARKS (ডিফল্ট) | ALL_LANDMARKS মুখের "ল্যান্ডমার্ক" শনাক্ত করার চেষ্টা করবেন কিনা: চোখ, কান, নাক, গাল, মুখ ইত্যাদি। |
কনট্যুরগুলি সনাক্ত করুন | NO_CONTOURS (ডিফল্ট) | ALL_CONTOURS মুখের বৈশিষ্ট্যগুলির কনট্যুর সনাক্ত করতে হবে কিনা। একটি ছবিতে শুধুমাত্র সবচেয়ে বিশিষ্ট মুখের জন্য কনট্যুর সনাক্ত করা হয়। |
মুখ শ্রেণীবদ্ধ করুন | NO_CLASSIFICATIONS (ডিফল্ট) | ALL_CLASSIFICATIONS মুখগুলিকে "হাসি" এবং "চোখ খোলা" এর মতো বিভাগগুলিতে শ্রেণীবদ্ধ করা যায় কিনা। |
ন্যূনতম মুখের আকার | float (ডিফল্ট: 0.1f )ন্যূনতম আকার, চিত্রের সাপেক্ষে, সনাক্ত করার জন্য মুখগুলির। |
ফেস ট্র্যাকিং সক্ষম করুন | false (ডিফল্ট) | true মুখগুলিকে একটি আইডি বরাদ্দ করা হবে কি না, যেটি ছবি জুড়ে মুখগুলি ট্র্যাক করতে ব্যবহার করা যেতে পারে৷ মনে রাখবেন যখন কনট্যুর সনাক্তকরণ সক্ষম করা হয়, শুধুমাত্র একটি মুখ সনাক্ত করা হয়, তাই মুখ ট্র্যাকিং দরকারী ফলাফল দেয় না। এই কারণে, এবং সনাক্তকরণের গতি উন্নত করতে, কনট্যুর সনাক্তকরণ এবং ফেস ট্র্যাকিং উভয়ই সক্ষম করবেন না। |
যেমন:
Java
// High-accuracy landmark detection and face classification FirebaseVisionFaceDetectorOptions highAccuracyOpts = new FirebaseVisionFaceDetectorOptions.Builder() .setPerformanceMode(FirebaseVisionFaceDetectorOptions.ACCURATE) .setLandmarkMode(FirebaseVisionFaceDetectorOptions.ALL_LANDMARKS) .setClassificationMode(FirebaseVisionFaceDetectorOptions.ALL_CLASSIFICATIONS) .build(); // Real-time contour detection of multiple faces FirebaseVisionFaceDetectorOptions realTimeOpts = new FirebaseVisionFaceDetectorOptions.Builder() .setContourMode(FirebaseVisionFaceDetectorOptions.ALL_CONTOURS) .build();
Kotlin+KTX
// High-accuracy landmark detection and face classification val highAccuracyOpts = FirebaseVisionFaceDetectorOptions.Builder() .setPerformanceMode(FirebaseVisionFaceDetectorOptions.ACCURATE) .setLandmarkMode(FirebaseVisionFaceDetectorOptions.ALL_LANDMARKS) .setClassificationMode(FirebaseVisionFaceDetectorOptions.ALL_CLASSIFICATIONS) .build() // Real-time contour detection of multiple faces val realTimeOpts = FirebaseVisionFaceDetectorOptions.Builder() .setContourMode(FirebaseVisionFaceDetectorOptions.ALL_CONTOURS) .build()
2. ফেস ডিটেক্টর চালান
একটি চিত্রের মুখগুলি সনাক্ত করতে, একটিBitmap
, media.Image
. ইমেজ , ByteBuffer
, বাইট অ্যারে বা ডিভাইসের একটি ফাইল থেকে একটি FirebaseVisionImage
অবজেক্ট তৈরি করুন৷ তারপর, FirebaseVisionFaceDetector
এর detectInImage
পদ্ধতিতে FirebaseVisionImage
অবজেক্টটি পাস করুন।মুখ শনাক্তকরণের জন্য, আপনার কমপক্ষে 480x360 পিক্সেলের মাত্রা সহ একটি চিত্র ব্যবহার করা উচিত। আপনি যদি রিয়েল টাইমে মুখগুলি চিনতে পারেন, এই ন্যূনতম রেজোলিউশনে ফ্রেমগুলি ক্যাপচার করা লেটেন্সি কমাতে সাহায্য করতে পারে৷
আপনার ছবি থেকে একটি
FirebaseVisionImage
অবজেক্ট তৈরি করুন।একটি
media.Image
থেকে একটিFirebaseVisionImage
অবজেক্ট তৈরি করতে। ইমেজ অবজেক্ট, যেমন একটি ডিভাইসের ক্যামেরা থেকে একটি ইমেজ ক্যাপচার করার সময়,media.Image
পাস করুন। ইমেজ অবজেক্ট এবং ছবির রোটেশনFirebaseVisionImage.fromMediaImage()
এ।আপনি যদি CameraX লাইব্রেরি ব্যবহার করেন,
OnImageCapturedListener
এবংImageAnalysis.Analyzer
ক্লাসগুলি আপনার জন্য ঘূর্ণন মান গণনা করে, তাই আপনাকেFirebaseVisionImage.fromMediaImage()
কল করার আগে ML কিটেরROTATION_
ধ্রুবকগুলির মধ্যে একটিতে ঘূর্ণন রূপান্তর করতে হবে।Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
আপনি যদি এমন একটি ক্যামেরা লাইব্রেরি ব্যবহার না করেন যা আপনাকে চিত্রের ঘূর্ণন দেয়, আপনি ডিভাইসের ঘূর্ণন এবং ডিভাইসে ক্যামেরা সেন্সরের অভিযোজন থেকে এটি গণনা করতে পারেন:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
তারপর,
media.Image
অবজেক্ট এবং ঘূর্ণন মানFirebaseVisionImage.fromMediaImage()
এ পাস করুন :Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- একটি ফাইল URI থেকে একটি
FirebaseVisionImage
অবজেক্ট তৈরি করতে, অ্যাপ প্রসঙ্গ এবং ফাইল URIFirebaseVisionImage.fromFilePath()
-এ পাস করুন। এটি উপযোগী যখন আপনি একটিACTION_GET_CONTENT
উদ্দেশ্য ব্যবহার করে ব্যবহারকারীকে তাদের গ্যালারি অ্যাপ থেকে একটি ছবি নির্বাচন করতে অনুরোধ করেন৷Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- একটি
ByteBuffer
বা একটি বাইট অ্যারে থেকে একটিFirebaseVisionImage
অবজেক্ট তৈরি করতে, প্রথমেmedia.Image
ইনপুটের জন্য উপরে বর্ণিত চিত্রের ঘূর্ণন গণনা করুন৷তারপরে, একটি
FirebaseVisionImageMetadata
অবজেক্ট তৈরি করুন যাতে ছবির উচ্চতা, প্রস্থ, রঙ এনকোডিং বিন্যাস এবং ঘূর্ণন থাকে:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
একটি
FirebaseVisionImage
অবজেক্ট তৈরি করতে বাফার বা অ্যারে এবং মেটাডেটা অবজেক্ট ব্যবহার করুন:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- একটি
Bitmap
বস্তু থেকে একটিFirebaseVisionImage
অবজেক্ট তৈরি করতে:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
অবজেক্ট দ্বারা উপস্থাপিত চিত্রটি অবশ্যই খাড়া হতে হবে, কোন অতিরিক্ত ঘূর্ণনের প্রয়োজন নেই।
FirebaseVisionFaceDetector
এর একটি উদাহরণ পান:Java
FirebaseVisionFaceDetector detector = FirebaseVision.getInstance() .getVisionFaceDetector(options);
Kotlin+KTX
val detector = FirebaseVision.getInstance() .getVisionFaceDetector(options)
অবশেষে, চিত্রটিকে
detectInImage
পদ্ধতিতে পাস করুন:Java
Task<List<FirebaseVisionFace>> result = detector.detectInImage(image) .addOnSuccessListener( new OnSuccessListener<List<FirebaseVisionFace>>() { @Override public void onSuccess(List<FirebaseVisionFace> faces) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin+KTX
val result = detector.detectInImage(image) .addOnSuccessListener { faces -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
3. সনাক্ত করা মুখ সম্পর্কে তথ্য পান
মুখ শনাক্তকরণ অপারেশন সফল হলে,FirebaseVisionFace
বস্তুর একটি তালিকা সফল শ্রোতার কাছে পাঠানো হবে। প্রতিটি FirebaseVisionFace
অবজেক্ট একটি মুখের প্রতিনিধিত্ব করে যা ছবিতে শনাক্ত করা হয়েছে। প্রতিটি মুখের জন্য, আপনি ইনপুট চিত্রে এর আবদ্ধ স্থানাঙ্ক পেতে পারেন, সেইসাথে আপনি ফেস ডিটেক্টরকে খুঁজে বের করার জন্য কনফিগার করেছেন এমন অন্য কোনো তথ্য। যেমন: Java
for (FirebaseVisionFace face : faces) { Rect bounds = face.getBoundingBox(); float rotY = face.getHeadEulerAngleY(); // Head is rotated to the right rotY degrees float rotZ = face.getHeadEulerAngleZ(); // Head is tilted sideways rotZ degrees // If landmark detection was enabled (mouth, ears, eyes, cheeks, and // nose available): FirebaseVisionFaceLandmark leftEar = face.getLandmark(FirebaseVisionFaceLandmark.LEFT_EAR); if (leftEar != null) { FirebaseVisionPoint leftEarPos = leftEar.getPosition(); } // If contour detection was enabled: List<FirebaseVisionPoint> leftEyeContour = face.getContour(FirebaseVisionFaceContour.LEFT_EYE).getPoints(); List<FirebaseVisionPoint> upperLipBottomContour = face.getContour(FirebaseVisionFaceContour.UPPER_LIP_BOTTOM).getPoints(); // If classification was enabled: if (face.getSmilingProbability() != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) { float smileProb = face.getSmilingProbability(); } if (face.getRightEyeOpenProbability() != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) { float rightEyeOpenProb = face.getRightEyeOpenProbability(); } // If face tracking was enabled: if (face.getTrackingId() != FirebaseVisionFace.INVALID_ID) { int id = face.getTrackingId(); } }
Kotlin+KTX
for (face in faces) { val bounds = face.boundingBox val rotY = face.headEulerAngleY // Head is rotated to the right rotY degrees val rotZ = face.headEulerAngleZ // Head is tilted sideways rotZ degrees // If landmark detection was enabled (mouth, ears, eyes, cheeks, and // nose available): val leftEar = face.getLandmark(FirebaseVisionFaceLandmark.LEFT_EAR) leftEar?.let { val leftEarPos = leftEar.position } // If contour detection was enabled: val leftEyeContour = face.getContour(FirebaseVisionFaceContour.LEFT_EYE).points val upperLipBottomContour = face.getContour(FirebaseVisionFaceContour.UPPER_LIP_BOTTOM).points // If classification was enabled: if (face.smilingProbability != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) { val smileProb = face.smilingProbability } if (face.rightEyeOpenProbability != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) { val rightEyeOpenProb = face.rightEyeOpenProbability } // If face tracking was enabled: if (face.trackingId != FirebaseVisionFace.INVALID_ID) { val id = face.trackingId } }
মুখের রূপের উদাহরণ
যখন আপনার মুখের কনট্যুর সনাক্তকরণ সক্ষম থাকে, তখন আপনি সনাক্ত করা প্রতিটি মুখের বৈশিষ্ট্যের জন্য পয়েন্টগুলির একটি তালিকা পাবেন। এই পয়েন্টগুলি বৈশিষ্ট্যের আকৃতির প্রতিনিধিত্ব করে। কনট্যুরগুলি কীভাবে উপস্থাপন করা হয় সে সম্পর্কে বিস্তারিত জানার জন্য মুখ সনাক্তকরণ ধারণার ওভারভিউ দেখুন।
নিম্নলিখিত চিত্রটি ব্যাখ্যা করে কিভাবে এই পয়েন্টগুলি একটি মুখের সাথে মানচিত্র করে (বড় করতে ছবিটিতে ক্লিক করুন):
রিয়েল-টাইম ফেস ডিটেকশন
আপনি যদি একটি রিয়েল-টাইম অ্যাপ্লিকেশনে মুখ সনাক্তকরণ ব্যবহার করতে চান, সেরা ফ্রেমরেটগুলি অর্জন করতে এই নির্দেশিকাগুলি অনুসরণ করুন:
মুখের কনট্যুর সনাক্তকরণ বা শ্রেণীবিভাগ এবং ল্যান্ডমার্ক সনাক্তকরণ ব্যবহার করতে ফেস ডিটেক্টর কনফিগার করুন , তবে উভয়ই নয়:
কনট্যুর সনাক্তকরণ
ল্যান্ডমার্ক সনাক্তকরণ
শ্রেণীবিভাগ
ল্যান্ডমার্ক সনাক্তকরণ এবং শ্রেণীবিভাগ
কনট্যুর সনাক্তকরণ এবং ল্যান্ডমার্ক সনাক্তকরণ
কনট্যুর সনাক্তকরণ এবং শ্রেণীবিভাগ
কনট্যুর সনাক্তকরণ, ল্যান্ডমার্ক সনাক্তকরণ, এবং শ্রেণীবিভাগFAST
মোড সক্ষম করুন (ডিফল্টরূপে সক্ষম)।কম রেজোলিউশনে ছবি তোলার কথা বিবেচনা করুন। যাইহোক, এই API এর চিত্র মাত্রা প্রয়োজনীয়তাও মনে রাখবেন।
- থ্রটল ডিটেক্টর কল. ডিটেক্টর চলাকালীন একটি নতুন ভিডিও ফ্রেম উপলব্ধ হলে, ফ্রেমটি ফেলে দিন।
- আপনি যদি ইনপুট ইমেজে গ্রাফিক্স ওভারলে করার জন্য ডিটেক্টরের আউটপুট ব্যবহার করেন, তাহলে প্রথমে ML Kit থেকে ফলাফল পান, তারপর একটি একক ধাপে চিত্র এবং ওভারলে রেন্ডার করুন। এটি করার মাধ্যমে, আপনি প্রতিটি ইনপুট ফ্রেমের জন্য শুধুমাত্র একবার প্রদর্শন পৃষ্ঠে রেন্ডার করবেন।
আপনি Camera2 API ব্যবহার করলে,
ImageFormat.YUV_420_888
ফরম্যাটে ছবি ক্যাপচার করুন।আপনি পুরানো ক্যামেরা API ব্যবহার করলে,
ImageFormat.NV21
ফর্ম্যাটে ছবিগুলি ক্যাপচার করুন৷
আপনি ছবি এবং ভিডিওতে মুখ সনাক্ত করতে ML কিট ব্যবহার করতে পারেন।
আপনি শুরু করার আগে
- যদি আপনি ইতিমধ্যেই না করে থাকেন তাহলে আপনার Android প্রকল্পে Firebase যোগ করুন ।
- আপনার মডিউল (অ্যাপ-লেভেল) গ্রেডল ফাইলে (সাধারণত
app/build.gradle
) ML কিট অ্যান্ড্রয়েড লাইব্রেরির নির্ভরতা যুক্ত করুন :apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' // If you want to detect face contours (landmark detection and classification // don't require this additional model): implementation 'com.google.firebase:firebase-ml-vision-face-model:20.0.1' }
- ঐচ্ছিক কিন্তু প্রস্তাবিত : প্লে স্টোর থেকে আপনার অ্যাপ ইনস্টল করার পরে ডিভাইসে স্বয়ংক্রিয়ভাবে ML মডেল ডাউনলোড করতে আপনার অ্যাপ কনফিগার করুন।
এটি করতে, আপনার অ্যাপের
AndroidManifest.xml
ফাইলে নিম্নলিখিত ঘোষণা যোগ করুন:<application ...> ... <meta-data android:name="com.google.firebase.ml.vision.DEPENDENCIES" android:value="face" /> <!-- To use multiple models: android:value="face,model2,model3" --> </application>
আপনি যদি ইনস্টল-টাইম মডেল ডাউনলোডগুলি সক্ষম না করেন, আপনি প্রথমবার ডিটেক্টর চালানোর সময় মডেলটি ডাউনলোড করা হবে৷ ডাউনলোড শেষ হওয়ার আগে আপনি যে অনুরোধগুলি করেন সেগুলি কোনও ফলাফল দেবে না।
ইনপুট ইমেজ নির্দেশিকা
ML Kit সঠিকভাবে মুখ সনাক্ত করতে, ইনপুট চিত্রগুলিতে পর্যাপ্ত পিক্সেল ডেটা দ্বারা প্রতিনিধিত্ব করা মুখগুলি থাকতে হবে৷ সাধারণভাবে, আপনি একটি ছবিতে সনাক্ত করতে চান এমন প্রতিটি মুখ কমপক্ষে 100x100 পিক্সেল হওয়া উচিত। আপনি যদি মুখের কনট্যুরগুলি সনাক্ত করতে চান, এমএল কিটের উচ্চ রেজোলিউশন ইনপুট প্রয়োজন: প্রতিটি মুখ কমপক্ষে 200x200 পিক্সেল হওয়া উচিত।
আপনি যদি একটি রিয়েল-টাইম অ্যাপ্লিকেশনে মুখগুলি সনাক্ত করেন তবে আপনি ইনপুট চিত্রগুলির সামগ্রিক মাত্রাগুলিও বিবেচনা করতে চাইতে পারেন৷ ছোট ছবিগুলি দ্রুত প্রক্রিয়া করা যেতে পারে, তাই লেটেন্সি কমাতে, কম রেজোলিউশনে ছবিগুলি ক্যাপচার করুন (উপরের নির্ভুলতার প্রয়োজনীয়তাগুলি মনে রেখে) এবং নিশ্চিত করুন যে বিষয়ের মুখ যতটা সম্ভব ছবিটি দখল করে। এছাড়াও রিয়েল-টাইম কর্মক্ষমতা উন্নত করার টিপস দেখুন।
খারাপ ছবির ফোকাস নির্ভুলতা ক্ষতি করতে পারে. আপনি যদি গ্রহণযোগ্য ফলাফল না পান, তাহলে ব্যবহারকারীকে ছবিটি পুনরায় ক্যাপচার করতে বলার চেষ্টা করুন।
ক্যামেরার সাপেক্ষে একটি মুখের অভিযোজন ML কিট মুখের বৈশিষ্ট্যগুলিকেও প্রভাবিত করতে পারে৷ মুখ সনাক্তকরণ ধারণা দেখুন।
1. ফেস ডিটেক্টর কনফিগার করুন
আপনি একটি ছবিতে মুখ সনাক্তকরণ প্রয়োগ করার আগে, আপনি যদি ফেস ডিটেক্টরের ডিফল্ট সেটিংস পরিবর্তন করতে চান তবে একটিFirebaseVisionFaceDetectorOptions
অবজেক্টের সাথে সেই সেটিংস নির্দিষ্ট করুন৷ আপনি নিম্নলিখিত সেটিংস পরিবর্তন করতে পারেন:সেটিংস | |
---|---|
কর্মক্ষমতা মোড | FAST (ডিফল্ট) | ACCURATE মুখ সনাক্ত করার সময় গতি বা নির্ভুলতার পক্ষে। |
ল্যান্ডমার্ক সনাক্ত করুন | NO_LANDMARKS (ডিফল্ট) | ALL_LANDMARKS মুখের "ল্যান্ডমার্ক" শনাক্ত করার চেষ্টা করবেন কিনা: চোখ, কান, নাক, গাল, মুখ ইত্যাদি। |
কনট্যুরগুলি সনাক্ত করুন | NO_CONTOURS (ডিফল্ট) | ALL_CONTOURS মুখের বৈশিষ্ট্যগুলির কনট্যুর সনাক্ত করতে হবে কিনা। একটি ছবিতে শুধুমাত্র সবচেয়ে বিশিষ্ট মুখের জন্য কনট্যুর সনাক্ত করা হয়। |
মুখ শ্রেণীবদ্ধ করুন | NO_CLASSIFICATIONS (ডিফল্ট) | ALL_CLASSIFICATIONS মুখগুলিকে "হাসি" এবং "চোখ খোলা" এর মতো বিভাগগুলিতে শ্রেণীবদ্ধ করা যায় কিনা। |
ন্যূনতম মুখের আকার | float (ডিফল্ট: 0.1f )ন্যূনতম আকার, চিত্রের সাপেক্ষে, সনাক্ত করার জন্য মুখগুলির। |
ফেস ট্র্যাকিং সক্ষম করুন | false (ডিফল্ট) | true মুখগুলিকে একটি আইডি বরাদ্দ করা হবে কি না, যেটি ছবি জুড়ে মুখগুলি ট্র্যাক করতে ব্যবহার করা যেতে পারে৷ মনে রাখবেন যখন কনট্যুর সনাক্তকরণ সক্ষম করা হয়, শুধুমাত্র একটি মুখ সনাক্ত করা হয়, তাই মুখ ট্র্যাকিং দরকারী ফলাফল দেয় না। এই কারণে, এবং সনাক্তকরণের গতি উন্নত করতে, কনট্যুর সনাক্তকরণ এবং ফেস ট্র্যাকিং উভয়ই সক্ষম করবেন না। |
যেমন:
Java
// High-accuracy landmark detection and face classification FirebaseVisionFaceDetectorOptions highAccuracyOpts = new FirebaseVisionFaceDetectorOptions.Builder() .setPerformanceMode(FirebaseVisionFaceDetectorOptions.ACCURATE) .setLandmarkMode(FirebaseVisionFaceDetectorOptions.ALL_LANDMARKS) .setClassificationMode(FirebaseVisionFaceDetectorOptions.ALL_CLASSIFICATIONS) .build(); // Real-time contour detection of multiple faces FirebaseVisionFaceDetectorOptions realTimeOpts = new FirebaseVisionFaceDetectorOptions.Builder() .setContourMode(FirebaseVisionFaceDetectorOptions.ALL_CONTOURS) .build();
Kotlin+KTX
// High-accuracy landmark detection and face classification val highAccuracyOpts = FirebaseVisionFaceDetectorOptions.Builder() .setPerformanceMode(FirebaseVisionFaceDetectorOptions.ACCURATE) .setLandmarkMode(FirebaseVisionFaceDetectorOptions.ALL_LANDMARKS) .setClassificationMode(FirebaseVisionFaceDetectorOptions.ALL_CLASSIFICATIONS) .build() // Real-time contour detection of multiple faces val realTimeOpts = FirebaseVisionFaceDetectorOptions.Builder() .setContourMode(FirebaseVisionFaceDetectorOptions.ALL_CONTOURS) .build()
2. ফেস ডিটেক্টর চালান
একটি চিত্রের মুখগুলি সনাক্ত করতে, একটিBitmap
, media.Image
. ইমেজ , ByteBuffer
, বাইট অ্যারে বা ডিভাইসের একটি ফাইল থেকে একটি FirebaseVisionImage
অবজেক্ট তৈরি করুন৷ তারপর, FirebaseVisionFaceDetector
এর detectInImage
পদ্ধতিতে FirebaseVisionImage
অবজেক্টটি পাস করুন।মুখ শনাক্তকরণের জন্য, আপনার কমপক্ষে 480x360 পিক্সেলের মাত্রা সহ একটি চিত্র ব্যবহার করা উচিত। আপনি যদি রিয়েল টাইমে মুখগুলি চিনতে পারেন, এই ন্যূনতম রেজোলিউশনে ফ্রেমগুলি ক্যাপচার করা লেটেন্সি কমাতে সাহায্য করতে পারে৷
আপনার ছবি থেকে একটি
FirebaseVisionImage
অবজেক্ট তৈরি করুন।একটি
media.Image
থেকে একটিFirebaseVisionImage
অবজেক্ট তৈরি করতে। ইমেজ অবজেক্ট, যেমন একটি ডিভাইসের ক্যামেরা থেকে একটি ইমেজ ক্যাপচার করার সময়,media.Image
পাস করুন। ইমেজ অবজেক্ট এবং ছবির রোটেশনFirebaseVisionImage.fromMediaImage()
এ।আপনি যদি CameraX লাইব্রেরি ব্যবহার করেন,
OnImageCapturedListener
এবংImageAnalysis.Analyzer
ক্লাসগুলি আপনার জন্য ঘূর্ণন মান গণনা করে, তাই আপনাকেFirebaseVisionImage.fromMediaImage()
কল করার আগে ML কিটেরROTATION_
ধ্রুবকগুলির মধ্যে একটিতে ঘূর্ণন রূপান্তর করতে হবে।Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
আপনি যদি এমন একটি ক্যামেরা লাইব্রেরি ব্যবহার না করেন যা আপনাকে চিত্রের ঘূর্ণন দেয়, আপনি ডিভাইসের ঘূর্ণন এবং ডিভাইসে ক্যামেরা সেন্সরের অভিযোজন থেকে এটি গণনা করতে পারেন:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
তারপর,
media.Image
অবজেক্ট এবং ঘূর্ণন মানFirebaseVisionImage.fromMediaImage()
এ পাস করুন :Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- একটি ফাইল URI থেকে একটি
FirebaseVisionImage
অবজেক্ট তৈরি করতে, অ্যাপ প্রসঙ্গ এবং ফাইল URIFirebaseVisionImage.fromFilePath()
-এ পাস করুন। এটি উপযোগী যখন আপনি একটিACTION_GET_CONTENT
উদ্দেশ্য ব্যবহার করে ব্যবহারকারীকে তাদের গ্যালারি অ্যাপ থেকে একটি ছবি নির্বাচন করতে অনুরোধ করেন৷Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- একটি
ByteBuffer
বা একটি বাইট অ্যারে থেকে একটিFirebaseVisionImage
অবজেক্ট তৈরি করতে, প্রথমেmedia.Image
ইনপুটের জন্য উপরে বর্ণিত চিত্রের ঘূর্ণন গণনা করুন৷তারপরে, একটি
FirebaseVisionImageMetadata
অবজেক্ট তৈরি করুন যাতে ছবির উচ্চতা, প্রস্থ, রঙ এনকোডিং বিন্যাস এবং ঘূর্ণন থাকে:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
একটি
FirebaseVisionImage
অবজেক্ট তৈরি করতে বাফার বা অ্যারে এবং মেটাডেটা অবজেক্ট ব্যবহার করুন:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- একটি
Bitmap
বস্তু থেকে একটিFirebaseVisionImage
অবজেক্ট তৈরি করতে:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
অবজেক্ট দ্বারা উপস্থাপিত চিত্রটি অবশ্যই খাড়া হতে হবে, কোন অতিরিক্ত ঘূর্ণনের প্রয়োজন নেই।
FirebaseVisionFaceDetector
এর একটি উদাহরণ পান:Java
FirebaseVisionFaceDetector detector = FirebaseVision.getInstance() .getVisionFaceDetector(options);
Kotlin+KTX
val detector = FirebaseVision.getInstance() .getVisionFaceDetector(options)
অবশেষে, চিত্রটিকে
detectInImage
পদ্ধতিতে পাস করুন:Java
Task<List<FirebaseVisionFace>> result = detector.detectInImage(image) .addOnSuccessListener( new OnSuccessListener<List<FirebaseVisionFace>>() { @Override public void onSuccess(List<FirebaseVisionFace> faces) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin+KTX
val result = detector.detectInImage(image) .addOnSuccessListener { faces -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
3. সনাক্ত করা মুখ সম্পর্কে তথ্য পান
মুখ শনাক্তকরণ অপারেশন সফল হলে,FirebaseVisionFace
বস্তুর একটি তালিকা সফল শ্রোতার কাছে পাঠানো হবে। প্রতিটি FirebaseVisionFace
অবজেক্ট একটি মুখের প্রতিনিধিত্ব করে যা ছবিতে শনাক্ত করা হয়েছে। প্রতিটি মুখের জন্য, আপনি ইনপুট চিত্রে এর আবদ্ধ স্থানাঙ্ক পেতে পারেন, সেইসাথে আপনি ফেস ডিটেক্টরকে খুঁজে বের করার জন্য কনফিগার করেছেন এমন অন্য কোনো তথ্য। যেমন: Java
for (FirebaseVisionFace face : faces) { Rect bounds = face.getBoundingBox(); float rotY = face.getHeadEulerAngleY(); // Head is rotated to the right rotY degrees float rotZ = face.getHeadEulerAngleZ(); // Head is tilted sideways rotZ degrees // If landmark detection was enabled (mouth, ears, eyes, cheeks, and // nose available): FirebaseVisionFaceLandmark leftEar = face.getLandmark(FirebaseVisionFaceLandmark.LEFT_EAR); if (leftEar != null) { FirebaseVisionPoint leftEarPos = leftEar.getPosition(); } // If contour detection was enabled: List<FirebaseVisionPoint> leftEyeContour = face.getContour(FirebaseVisionFaceContour.LEFT_EYE).getPoints(); List<FirebaseVisionPoint> upperLipBottomContour = face.getContour(FirebaseVisionFaceContour.UPPER_LIP_BOTTOM).getPoints(); // If classification was enabled: if (face.getSmilingProbability() != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) { float smileProb = face.getSmilingProbability(); } if (face.getRightEyeOpenProbability() != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) { float rightEyeOpenProb = face.getRightEyeOpenProbability(); } // If face tracking was enabled: if (face.getTrackingId() != FirebaseVisionFace.INVALID_ID) { int id = face.getTrackingId(); } }
Kotlin+KTX
for (face in faces) { val bounds = face.boundingBox val rotY = face.headEulerAngleY // Head is rotated to the right rotY degrees val rotZ = face.headEulerAngleZ // Head is tilted sideways rotZ degrees // If landmark detection was enabled (mouth, ears, eyes, cheeks, and // nose available): val leftEar = face.getLandmark(FirebaseVisionFaceLandmark.LEFT_EAR) leftEar?.let { val leftEarPos = leftEar.position } // If contour detection was enabled: val leftEyeContour = face.getContour(FirebaseVisionFaceContour.LEFT_EYE).points val upperLipBottomContour = face.getContour(FirebaseVisionFaceContour.UPPER_LIP_BOTTOM).points // If classification was enabled: if (face.smilingProbability != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) { val smileProb = face.smilingProbability } if (face.rightEyeOpenProbability != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) { val rightEyeOpenProb = face.rightEyeOpenProbability } // If face tracking was enabled: if (face.trackingId != FirebaseVisionFace.INVALID_ID) { val id = face.trackingId } }
মুখের রূপের উদাহরণ
যখন আপনার মুখের কনট্যুর সনাক্তকরণ সক্ষম থাকে, তখন আপনি সনাক্ত করা প্রতিটি মুখের বৈশিষ্ট্যের জন্য পয়েন্টগুলির একটি তালিকা পাবেন। এই পয়েন্টগুলি বৈশিষ্ট্যের আকৃতির প্রতিনিধিত্ব করে। কনট্যুরগুলি কীভাবে উপস্থাপন করা হয় সে সম্পর্কে বিস্তারিত জানার জন্য মুখ সনাক্তকরণ ধারণার ওভারভিউ দেখুন।
নিম্নলিখিত চিত্রটি ব্যাখ্যা করে কিভাবে এই পয়েন্টগুলি একটি মুখের সাথে মানচিত্র করে (বড় করতে ছবিটিতে ক্লিক করুন):
রিয়েল-টাইম ফেস ডিটেকশন
আপনি যদি একটি রিয়েল-টাইম অ্যাপ্লিকেশনে মুখ সনাক্তকরণ ব্যবহার করতে চান, সেরা ফ্রেমরেটগুলি অর্জন করতে এই নির্দেশিকাগুলি অনুসরণ করুন:
মুখের কনট্যুর সনাক্তকরণ বা শ্রেণীবিভাগ এবং ল্যান্ডমার্ক সনাক্তকরণ ব্যবহার করতে ফেস ডিটেক্টর কনফিগার করুন , তবে উভয়ই নয়:
কনট্যুর সনাক্তকরণ
ল্যান্ডমার্ক সনাক্তকরণ
শ্রেণীবিভাগ
ল্যান্ডমার্ক সনাক্তকরণ এবং শ্রেণীবিভাগ
কনট্যুর সনাক্তকরণ এবং ল্যান্ডমার্ক সনাক্তকরণ
কনট্যুর সনাক্তকরণ এবং শ্রেণীবিভাগ
কনট্যুর সনাক্তকরণ, ল্যান্ডমার্ক সনাক্তকরণ, এবং শ্রেণীবিভাগFAST
মোড সক্ষম করুন (ডিফল্টরূপে সক্ষম)।কম রেজোলিউশনে ছবি তোলার কথা বিবেচনা করুন। যাইহোক, এই API এর চিত্র মাত্রা প্রয়োজনীয়তাও মনে রাখবেন।
- থ্রটল ডিটেক্টর কল. ডিটেক্টর চলাকালীন একটি নতুন ভিডিও ফ্রেম উপলব্ধ হলে, ফ্রেমটি ফেলে দিন।
- আপনি যদি ইনপুট ইমেজে গ্রাফিক্স ওভারলে করার জন্য ডিটেক্টরের আউটপুট ব্যবহার করেন, তাহলে প্রথমে ML Kit থেকে ফলাফল পান, তারপর একটি একক ধাপে চিত্র এবং ওভারলে রেন্ডার করুন। এটি করার মাধ্যমে, আপনি প্রতিটি ইনপুট ফ্রেমের জন্য শুধুমাত্র একবার প্রদর্শন পৃষ্ঠে রেন্ডার করবেন।
আপনি Camera2 API ব্যবহার করলে,
ImageFormat.YUV_420_888
ফরম্যাটে ছবি ক্যাপচার করুন।আপনি পুরানো ক্যামেরা API ব্যবহার করলে,
ImageFormat.NV21
ফর্ম্যাটে ছবিগুলি ক্যাপচার করুন৷
আপনি ছবি এবং ভিডিওতে মুখ সনাক্ত করতে ML কিট ব্যবহার করতে পারেন।
আপনি শুরু করার আগে
- যদি আপনি ইতিমধ্যেই না করে থাকেন তাহলে আপনার Android প্রকল্পে Firebase যোগ করুন ।
- আপনার মডিউল (অ্যাপ-লেভেল) গ্রেডল ফাইলে (সাধারণত
app/build.gradle
) ML কিট অ্যান্ড্রয়েড লাইব্রেরির নির্ভরতা যুক্ত করুন :apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' // If you want to detect face contours (landmark detection and classification // don't require this additional model): implementation 'com.google.firebase:firebase-ml-vision-face-model:20.0.1' }
- ঐচ্ছিক কিন্তু প্রস্তাবিত : প্লে স্টোর থেকে আপনার অ্যাপ ইনস্টল করার পরে ডিভাইসে স্বয়ংক্রিয়ভাবে ML মডেল ডাউনলোড করতে আপনার অ্যাপ কনফিগার করুন।
এটি করতে, আপনার অ্যাপের
AndroidManifest.xml
ফাইলে নিম্নলিখিত ঘোষণা যোগ করুন:<application ...> ... <meta-data android:name="com.google.firebase.ml.vision.DEPENDENCIES" android:value="face" /> <!-- To use multiple models: android:value="face,model2,model3" --> </application>
আপনি যদি ইনস্টল-টাইম মডেল ডাউনলোডগুলি সক্ষম না করেন, আপনি প্রথমবার ডিটেক্টর চালানোর সময় মডেলটি ডাউনলোড করা হবে৷ ডাউনলোড শেষ হওয়ার আগে আপনি যে অনুরোধগুলি করেন সেগুলি কোনও ফলাফল দেবে না।
ইনপুট ইমেজ নির্দেশিকা
ML Kit সঠিকভাবে মুখ সনাক্ত করতে, ইনপুট চিত্রগুলিতে পর্যাপ্ত পিক্সেল ডেটা দ্বারা প্রতিনিধিত্ব করা মুখগুলি থাকতে হবে৷ সাধারণভাবে, আপনি একটি ছবিতে সনাক্ত করতে চান এমন প্রতিটি মুখ কমপক্ষে 100x100 পিক্সেল হওয়া উচিত। আপনি যদি মুখের কনট্যুরগুলি সনাক্ত করতে চান, এমএল কিটের উচ্চ রেজোলিউশন ইনপুট প্রয়োজন: প্রতিটি মুখ কমপক্ষে 200x200 পিক্সেল হওয়া উচিত।
আপনি যদি একটি রিয়েল-টাইম অ্যাপ্লিকেশনে মুখগুলি সনাক্ত করেন তবে আপনি ইনপুট চিত্রগুলির সামগ্রিক মাত্রাগুলিও বিবেচনা করতে চাইতে পারেন৷ ছোট ছবিগুলি দ্রুত প্রক্রিয়া করা যেতে পারে, তাই লেটেন্সি কমাতে, কম রেজোলিউশনে ছবিগুলি ক্যাপচার করুন (উপরের নির্ভুলতার প্রয়োজনীয়তাগুলি মনে রেখে) এবং নিশ্চিত করুন যে বিষয়ের মুখ যতটা সম্ভব ছবিটি দখল করে। এছাড়াও রিয়েল-টাইম কর্মক্ষমতা উন্নত করার টিপস দেখুন।
খারাপ ছবির ফোকাস নির্ভুলতা ক্ষতি করতে পারে. আপনি যদি গ্রহণযোগ্য ফলাফল না পান, তাহলে ব্যবহারকারীকে ছবিটি পুনরায় ক্যাপচার করতে বলার চেষ্টা করুন।
ক্যামেরার সাপেক্ষে একটি মুখের অভিযোজন ML কিট মুখের বৈশিষ্ট্যগুলিকেও প্রভাবিত করতে পারে৷ মুখ সনাক্তকরণ ধারণা দেখুন।
1. ফেস ডিটেক্টর কনফিগার করুন
আপনি একটি ছবিতে মুখ সনাক্তকরণ প্রয়োগ করার আগে, আপনি যদি ফেস ডিটেক্টরের ডিফল্ট সেটিংস পরিবর্তন করতে চান তবে একটিFirebaseVisionFaceDetectorOptions
অবজেক্টের সাথে সেই সেটিংস নির্দিষ্ট করুন৷ আপনি নিম্নলিখিত সেটিংস পরিবর্তন করতে পারেন:সেটিংস | |
---|---|
কর্মক্ষমতা মোড | FAST (ডিফল্ট) | ACCURATE মুখ সনাক্ত করার সময় গতি বা নির্ভুলতার পক্ষে। |
ল্যান্ডমার্ক সনাক্ত করুন | NO_LANDMARKS (ডিফল্ট) | ALL_LANDMARKS মুখের "ল্যান্ডমার্ক" শনাক্ত করার চেষ্টা করবেন কিনা: চোখ, কান, নাক, গাল, মুখ ইত্যাদি। |
কনট্যুরগুলি সনাক্ত করুন | NO_CONTOURS (ডিফল্ট) | ALL_CONTOURS মুখের বৈশিষ্ট্যগুলির কনট্যুর সনাক্ত করতে হবে কিনা। একটি ছবিতে শুধুমাত্র সবচেয়ে বিশিষ্ট মুখের জন্য কনট্যুর সনাক্ত করা হয়। |
মুখ শ্রেণীবদ্ধ করুন | NO_CLASSIFICATIONS (ডিফল্ট) | ALL_CLASSIFICATIONS মুখগুলিকে "হাসি" এবং "চোখ খোলা" এর মতো বিভাগগুলিতে শ্রেণীবদ্ধ করা যায় কিনা। |
ন্যূনতম মুখের আকার | float (ডিফল্ট: 0.1f )ন্যূনতম আকার, চিত্রের সাপেক্ষে, সনাক্ত করার জন্য মুখগুলির। |
ফেস ট্র্যাকিং সক্ষম করুন | false (ডিফল্ট) | true মুখগুলিকে একটি আইডি বরাদ্দ করা হবে কি না, যেটি ছবি জুড়ে মুখগুলি ট্র্যাক করতে ব্যবহার করা যেতে পারে৷ মনে রাখবেন যখন কনট্যুর সনাক্তকরণ সক্ষম করা হয়, শুধুমাত্র একটি মুখ সনাক্ত করা হয়, তাই মুখ ট্র্যাকিং দরকারী ফলাফল দেয় না। এই কারণে, এবং সনাক্তকরণের গতি উন্নত করতে, কনট্যুর সনাক্তকরণ এবং ফেস ট্র্যাকিং উভয়ই সক্ষম করবেন না। |
যেমন:
Java
// High-accuracy landmark detection and face classification FirebaseVisionFaceDetectorOptions highAccuracyOpts = new FirebaseVisionFaceDetectorOptions.Builder() .setPerformanceMode(FirebaseVisionFaceDetectorOptions.ACCURATE) .setLandmarkMode(FirebaseVisionFaceDetectorOptions.ALL_LANDMARKS) .setClassificationMode(FirebaseVisionFaceDetectorOptions.ALL_CLASSIFICATIONS) .build(); // Real-time contour detection of multiple faces FirebaseVisionFaceDetectorOptions realTimeOpts = new FirebaseVisionFaceDetectorOptions.Builder() .setContourMode(FirebaseVisionFaceDetectorOptions.ALL_CONTOURS) .build();
Kotlin+KTX
// High-accuracy landmark detection and face classification val highAccuracyOpts = FirebaseVisionFaceDetectorOptions.Builder() .setPerformanceMode(FirebaseVisionFaceDetectorOptions.ACCURATE) .setLandmarkMode(FirebaseVisionFaceDetectorOptions.ALL_LANDMARKS) .setClassificationMode(FirebaseVisionFaceDetectorOptions.ALL_CLASSIFICATIONS) .build() // Real-time contour detection of multiple faces val realTimeOpts = FirebaseVisionFaceDetectorOptions.Builder() .setContourMode(FirebaseVisionFaceDetectorOptions.ALL_CONTOURS) .build()
2. ফেস ডিটেক্টর চালান
একটি চিত্রের মুখগুলি সনাক্ত করতে, একটিBitmap
, media.Image
. ইমেজ , ByteBuffer
, বাইট অ্যারে বা ডিভাইসের একটি ফাইল থেকে একটি FirebaseVisionImage
অবজেক্ট তৈরি করুন৷ তারপর, FirebaseVisionFaceDetector
এর detectInImage
পদ্ধতিতে FirebaseVisionImage
অবজেক্টটি পাস করুন।মুখ শনাক্তকরণের জন্য, আপনার কমপক্ষে 480x360 পিক্সেলের মাত্রা সহ একটি চিত্র ব্যবহার করা উচিত। আপনি যদি রিয়েল টাইমে মুখগুলি চিনতে পারেন, এই ন্যূনতম রেজোলিউশনে ফ্রেমগুলি ক্যাপচার করা লেটেন্সি কমাতে সাহায্য করতে পারে৷
আপনার ছবি থেকে একটি
FirebaseVisionImage
অবজেক্ট তৈরি করুন।একটি
media.Image
থেকে একটিFirebaseVisionImage
অবজেক্ট তৈরি করতে। ইমেজ অবজেক্ট, যেমন একটি ডিভাইসের ক্যামেরা থেকে একটি ইমেজ ক্যাপচার করার সময়,media.Image
পাস করুন। ইমেজ অবজেক্ট এবং ছবির রোটেশনFirebaseVisionImage.fromMediaImage()
এ।আপনি যদি CameraX লাইব্রেরি ব্যবহার করেন,
OnImageCapturedListener
এবংImageAnalysis.Analyzer
ক্লাসগুলি আপনার জন্য ঘূর্ণন মান গণনা করে, তাই আপনাকেFirebaseVisionImage.fromMediaImage()
কল করার আগে ML কিটেরROTATION_
ধ্রুবকগুলির মধ্যে একটিতে ঘূর্ণন রূপান্তর করতে হবে।Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
আপনি যদি এমন একটি ক্যামেরা লাইব্রেরি ব্যবহার না করেন যা আপনাকে চিত্রের ঘূর্ণন দেয়, আপনি ডিভাইসের ঘূর্ণন এবং ডিভাইসে ক্যামেরা সেন্সরের অভিযোজন থেকে এটি গণনা করতে পারেন:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
তারপর,
media.Image
অবজেক্ট এবং ঘূর্ণন মানFirebaseVisionImage.fromMediaImage()
এ পাস করুন :Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- একটি ফাইল URI থেকে একটি
FirebaseVisionImage
অবজেক্ট তৈরি করতে, অ্যাপ প্রসঙ্গ এবং ফাইল URIFirebaseVisionImage.fromFilePath()
-এ পাস করুন। এটি উপযোগী যখন আপনি একটিACTION_GET_CONTENT
উদ্দেশ্য ব্যবহার করে ব্যবহারকারীকে তাদের গ্যালারি অ্যাপ থেকে একটি ছবি নির্বাচন করতে অনুরোধ করেন৷Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- একটি
ByteBuffer
বা একটি বাইট অ্যারে থেকে একটিFirebaseVisionImage
অবজেক্ট তৈরি করতে, প্রথমেmedia.Image
ইনপুটের জন্য উপরে বর্ণিত চিত্রের ঘূর্ণন গণনা করুন৷তারপরে, একটি
FirebaseVisionImageMetadata
অবজেক্ট তৈরি করুন যাতে ছবির উচ্চতা, প্রস্থ, রঙ এনকোডিং বিন্যাস এবং ঘূর্ণন থাকে:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
একটি
FirebaseVisionImage
অবজেক্ট তৈরি করতে বাফার বা অ্যারে এবং মেটাডেটা অবজেক্ট ব্যবহার করুন:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- একটি
Bitmap
বস্তু থেকে একটিFirebaseVisionImage
অবজেক্ট তৈরি করতে:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
অবজেক্ট দ্বারা উপস্থাপিত চিত্রটি অবশ্যই খাড়া হতে হবে, কোন অতিরিক্ত ঘূর্ণনের প্রয়োজন নেই।
FirebaseVisionFaceDetector
এর একটি উদাহরণ পান:Java
FirebaseVisionFaceDetector detector = FirebaseVision.getInstance() .getVisionFaceDetector(options);
Kotlin+KTX
val detector = FirebaseVision.getInstance() .getVisionFaceDetector(options)
অবশেষে, চিত্রটিকে
detectInImage
পদ্ধতিতে পাস করুন:Java
Task<List<FirebaseVisionFace>> result = detector.detectInImage(image) .addOnSuccessListener( new OnSuccessListener<List<FirebaseVisionFace>>() { @Override public void onSuccess(List<FirebaseVisionFace> faces) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin+KTX
val result = detector.detectInImage(image) .addOnSuccessListener { faces -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
3. সনাক্ত করা মুখ সম্পর্কে তথ্য পান
মুখ শনাক্তকরণ অপারেশন সফল হলে,FirebaseVisionFace
বস্তুর একটি তালিকা সফল শ্রোতার কাছে পাঠানো হবে। প্রতিটি FirebaseVisionFace
অবজেক্ট একটি মুখের প্রতিনিধিত্ব করে যা ছবিতে শনাক্ত করা হয়েছে। প্রতিটি মুখের জন্য, আপনি ইনপুট চিত্রে এর আবদ্ধ স্থানাঙ্ক পেতে পারেন, সেইসাথে আপনি ফেস ডিটেক্টরকে খুঁজে বের করার জন্য কনফিগার করেছেন এমন অন্য কোনো তথ্য। যেমন: Java
for (FirebaseVisionFace face : faces) { Rect bounds = face.getBoundingBox(); float rotY = face.getHeadEulerAngleY(); // Head is rotated to the right rotY degrees float rotZ = face.getHeadEulerAngleZ(); // Head is tilted sideways rotZ degrees // If landmark detection was enabled (mouth, ears, eyes, cheeks, and // nose available): FirebaseVisionFaceLandmark leftEar = face.getLandmark(FirebaseVisionFaceLandmark.LEFT_EAR); if (leftEar != null) { FirebaseVisionPoint leftEarPos = leftEar.getPosition(); } // If contour detection was enabled: List<FirebaseVisionPoint> leftEyeContour = face.getContour(FirebaseVisionFaceContour.LEFT_EYE).getPoints(); List<FirebaseVisionPoint> upperLipBottomContour = face.getContour(FirebaseVisionFaceContour.UPPER_LIP_BOTTOM).getPoints(); // If classification was enabled: if (face.getSmilingProbability() != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) { float smileProb = face.getSmilingProbability(); } if (face.getRightEyeOpenProbability() != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) { float rightEyeOpenProb = face.getRightEyeOpenProbability(); } // If face tracking was enabled: if (face.getTrackingId() != FirebaseVisionFace.INVALID_ID) { int id = face.getTrackingId(); } }
Kotlin+KTX
for (face in faces) { val bounds = face.boundingBox val rotY = face.headEulerAngleY // Head is rotated to the right rotY degrees val rotZ = face.headEulerAngleZ // Head is tilted sideways rotZ degrees // If landmark detection was enabled (mouth, ears, eyes, cheeks, and // nose available): val leftEar = face.getLandmark(FirebaseVisionFaceLandmark.LEFT_EAR) leftEar?.let { val leftEarPos = leftEar.position } // If contour detection was enabled: val leftEyeContour = face.getContour(FirebaseVisionFaceContour.LEFT_EYE).points val upperLipBottomContour = face.getContour(FirebaseVisionFaceContour.UPPER_LIP_BOTTOM).points // If classification was enabled: if (face.smilingProbability != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) { val smileProb = face.smilingProbability } if (face.rightEyeOpenProbability != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) { val rightEyeOpenProb = face.rightEyeOpenProbability } // If face tracking was enabled: if (face.trackingId != FirebaseVisionFace.INVALID_ID) { val id = face.trackingId } }
মুখের রূপের উদাহরণ
যখন আপনার মুখের কনট্যুর সনাক্তকরণ সক্ষম থাকে, তখন আপনি সনাক্ত করা প্রতিটি মুখের বৈশিষ্ট্যের জন্য পয়েন্টগুলির একটি তালিকা পাবেন। এই পয়েন্টগুলি বৈশিষ্ট্যের আকৃতির প্রতিনিধিত্ব করে। কনট্যুরগুলি কীভাবে উপস্থাপন করা হয় সে সম্পর্কে বিস্তারিত জানার জন্য মুখ সনাক্তকরণ ধারণার ওভারভিউ দেখুন।
নিম্নলিখিত চিত্রটি ব্যাখ্যা করে কিভাবে এই পয়েন্টগুলি একটি মুখের সাথে মানচিত্র করে (বড় করতে ছবিটিতে ক্লিক করুন):
রিয়েল-টাইম ফেস ডিটেকশন
আপনি যদি একটি রিয়েল-টাইম অ্যাপ্লিকেশনে মুখ সনাক্তকরণ ব্যবহার করতে চান, সেরা ফ্রেমরেটগুলি অর্জন করতে এই নির্দেশিকাগুলি অনুসরণ করুন:
মুখের কনট্যুর সনাক্তকরণ বা শ্রেণীবিভাগ এবং ল্যান্ডমার্ক সনাক্তকরণ ব্যবহার করতে ফেস ডিটেক্টর কনফিগার করুন , তবে উভয়ই নয়:
কনট্যুর সনাক্তকরণ
ল্যান্ডমার্ক সনাক্তকরণ
শ্রেণীবিভাগ
ল্যান্ডমার্ক সনাক্তকরণ এবং শ্রেণীবিভাগ
কনট্যুর সনাক্তকরণ এবং ল্যান্ডমার্ক সনাক্তকরণ
কনট্যুর সনাক্তকরণ এবং শ্রেণীবিভাগ
কনট্যুর সনাক্তকরণ, ল্যান্ডমার্ক সনাক্তকরণ, এবং শ্রেণীবিভাগFAST
মোড সক্ষম করুন (ডিফল্টরূপে সক্ষম)।কম রেজোলিউশনে ছবি তোলার কথা বিবেচনা করুন। যাইহোক, এই API এর চিত্র মাত্রা প্রয়োজনীয়তাও মনে রাখবেন।
- থ্রটল ডিটেক্টর কল. ডিটেক্টর চলাকালীন একটি নতুন ভিডিও ফ্রেম উপলব্ধ হলে, ফ্রেমটি ফেলে দিন।
- আপনি যদি ইনপুট ইমেজে গ্রাফিক্স ওভারলে করার জন্য ডিটেক্টরের আউটপুট ব্যবহার করেন, তাহলে প্রথমে ML Kit থেকে ফলাফল পান, তারপর একটি একক ধাপে চিত্র এবং ওভারলে রেন্ডার করুন। এটি করার মাধ্যমে, আপনি প্রতিটি ইনপুট ফ্রেমের জন্য শুধুমাত্র একবার প্রদর্শন পৃষ্ঠে রেন্ডার করবেন।
আপনি Camera2 API ব্যবহার করলে,
ImageFormat.YUV_420_888
ফরম্যাটে ছবি ক্যাপচার করুন।আপনি পুরানো ক্যামেরা API ব্যবহার করলে,
ImageFormat.NV21
ফর্ম্যাটে ছবিগুলি ক্যাপচার করুন৷