本页面介绍如何通过以下方法使用 Cloud Firestore 执行 K 最近邻 (KNN) 向量搜索:
- 存储向量值
- 创建和管理 KNN 向量索引
- 使用一个支持的向量距离函数执行 K 最近邻 (KNN) 查询
存储向量嵌入
您可以使用 Cloud Firestore 数据创建向量值(例如文本嵌入),并将它们存储在 Cloud Firestore 文档中。
通过向量嵌入执行写入操作
以下示例展示了如何将向量嵌入存储在 Cloud Firestore 文档中:
Python
from google.cloud import firestore from google.cloud.firestore_v1.vector import Vector firestore_client = firestore.Client() collection = firestore_client.collection("coffee-beans") doc = { "name": "Kahawa coffee beans", "description": "Information about the Kahawa coffee beans.", "embedding_field": Vector([1.0 , 2.0, 3.0]) } collection.add(doc)
Node.js
import { Firestore, FieldValue, } from "@google-cloud/firestore"; const db = new Firestore(); const coll = db.collection('coffee-beans'); await coll.add({ name: "Kahawa coffee beans", description: "Information about the Kahawa coffee beans.", embedding_field: FieldValue.vector([1.0 , 2.0, 3.0]) });
使用 Cloud Functions 函数计算向量嵌入
如要在文档每次创建或更新时便计算并存储相应的向量嵌入,您可以设置一个 Cloud Functions 函数:
Python
@functions_framework.cloud_event def store_embedding(cloud_event) -> None: """Triggers by a change to a Firestore document. """ firestore_payload = firestore.DocumentEventData() payload = firestore_payload._pb.ParseFromString(cloud_event.data) collection_id, doc_id = from_payload(payload) # Call a function to calculate the embedding embedding = calculate_embedding(payload) # Update the document doc = firestore_client.collection(collection_id).document(doc_id) doc.set({"embedding_field": embedding}, merge=True)
Node.js
/** * A vector embedding will be computed from the * value of the `content` field. The vector value * will be stored in the `embedding` field. The * field names `content` and `embedding` are arbitrary * field names chosen for this example. */ async function storeEmbedding(event: FirestoreEvent<any>): Promise<void> { // Get the previous value of the document's `content` field. const previousDocumentSnapshot = event.data.before as QueryDocumentSnapshot; const previousContent = previousDocumentSnapshot.get("content"); // Get the current value of the document's `content` field. const currentDocumentSnapshot = event.data.after as QueryDocumentSnapshot; const currentContent = currentDocumentSnapshot.get("content"); // Don't update the embedding if the content field did not change if (previousContent === currentContent) { return; } // Call a function to calculate the embedding for the value // of the `content` field. const embeddingVector = calculateEmbedding(currentContent); // Update the `embedding` field on the document. await currentDocumentSnapshot.ref.update({ embedding: embeddingVector, }); }
创建和管理向量索引
您必须先创建相应的索引,然后才能通过向量嵌入执行最近邻搜索。以下示例展示了如何创建和管理向量索引。
创建矢量索引
要创建向量索引,请使用 gcloud alpha firestore indexes composite create
:
gcloud
gcloud alpha firestore indexes composite create \ --collection-group=collection-group \ --query-scope=COLLECTION \ --field-config field-path=vector-field,vector-config='vector-configuration' \ --database=database-id
其中:
- collection-group 是集合组的 ID。
- vector-field 是包含向量嵌入的字段的名称。
- database-id 是相应数据库的 ID。
- vector-configuration 包含向量
dimension
和索引类型。dimension
是一个不超过 2,048 的整数。索引类型必须为flat
。按如下方式设置索引配置的格式:{"dimension":"DIMENSION", "flat": "{}"}
。
以下示例创建了一个复合索引,其中包含字段 vector-field
的向量索引以及字段 color
的升序索引。您可以在执行最近邻搜索之前使用此类索引预先过滤数据。
gcloud
gcloud alpha firestore indexes composite create \ --collection-group=collection-group \ --query-scope=COLLECTION \ --field-config=order=ASCENDING,field-path="color" \ --field-config field-path=vector-field,vector-config='{"dimension":"1024", "flat": "{}"}' \ --database=database-id
列出所有向量索引
gcloud
gcloud alpha firestore indexes composite list --database=database-id
将 database-id 替换为相应数据库的 ID。
删除矢量索引
gcloud
gcloud alpha firestore indexes composite delete index-id --database=database-id
其中:
- index-id 是要删除的索引的 ID。可使用
indexes composite list
检索索引 ID。 - database-id 是相应数据库的 ID。
描述向量索引
gcloud
gcloud alpha firestore indexes composite describe index-id --database=database-id
其中:
- index-id 是要描述的索引的 ID。可使用
indexes composite list
检索索引 ID。 - database-id 是相应数据库的 ID。
执行最近邻查询
您可以执行相似度搜索来查找向量嵌入的最近邻。相似度搜索需要使用向量索引。如果没有现成的索引,Cloud Firestore 会使用 gcloud CLI 建议一个可创建的索引。
Python
from google.cloud.firestore_v1.base_vector_query import DistanceMeasure collection = collection("coffee-beans") # Requires vector index collection.find_nearest( vector_field="embedding_field", query_vector=Vector([3.0, 1.0, 2.0]), distance_measure=DistanceMeasure.EUCLIDEAN, limit=5)
Node.js
import { Firestore, FieldValue, VectorQuery, VectorQuerySnapshot, } from "@google-cloud/firestore"; // Requires single-field vector index const vectorQuery: VectorQuery = coll.findNearest('embedding_field', FieldValue.vector([3.0, 1.0, 2.0]), { limit: 5, distanceMeasure: 'EUCLIDEAN' }); const vectorQuerySnapshot: VectorQuerySnapshot = await vectorQuery.get();
向量距离
最近邻查询支持下列向量距离选项:
EUCLIDEAN
:测量向量之间的欧几里得距离。如需了解详情,请参阅欧几里得。COSINE
:基于向量之间的角度来比较向量,这样可以测量不依赖于向量大小的相似度。对于单位归一化向量,建议使用DOT_PRODUCT
,而不是余弦距离,虽然两者在数学上是等效的,但前者性能更好。如需了解详情,请参阅余弦相似度。DOT_PRODUCT
:与COSINE
类似,但受向量大小影响。如需了解详情,请参阅点积。
预过滤数据
如要在查找最近邻之前预过滤数据,您可以将相似度搜索与其他过滤条件(不等式过滤条件除外)结合使用。支持 and
和 or
复合过滤条件。对于字段过滤条件,支持以下过滤条件:
==
等于in
array_contains
array_contains_any
Python
# Similarity search with pre-filter # Requires composite vector index collection.where("color", "==", "red").find_nearest( vector_field="embedding_field", query_vector=Vector([3.0, 1.0, 2.0]), distance_measure=DistanceMeasure.EUCLIDEAN, limit=5)
Node.js
// Similarity search with pre-filter // Requires composite vector index const preFilteredVectorQuery: VectorQuery = coll .where("color", "==", "red") .findNearest("embedding_field", FieldValue.vector([3.0, 1.0, 2.0]), { limit: 5, distanceMeasure: "EUCLIDEAN", }); vectorQueryResults = await preFilteredVectorQuery.get();
限制
请注意,在使用向量嵌入时,有以下限制:
- 支持的嵌入维度上限为 2,048。如要存储更大的索引,可使用降维。
- 通过最近邻查询返回的文档数量上限为 1,000。
- 向量搜索不支持实时快照监听器。
- 不能使用不等式过滤条件来预过滤数据。
- 只有 Python 和 Node.js 客户端库支持向量搜索。