Xử lý dữ liệu hàng loạt bằng Dataflow

Trang này cung cấp ví dụ về cách sử dụng Dataflow để thực hiện các thao tác Cloud Firestore hàng loạt trong một quy trình Apache Beam. Apache Beam hỗ trợ trình kết nối cho Cloud Firestore. Bạn có thể sử dụng trình kết nối này để chạy các thao tác xử lý hàng loạt và theo luồng trong Dataflow.

Bạn nên sử dụng Dataflow và Apache Beam cho khối lượng công việc xử lý dữ liệu trên quy mô lớn.

Trình kết nối Cloud Firestore cho Apache Beam có sẵn trong Java. Để biết thêm thông tin về trình kết nối Cloud Firestore, hãy xem SDK Apache Beam cho Java.

Trước khi bắt đầu

Trước khi đọc trang này, bạn nên làm quen với Mô hình lập trình cho Apache Beam.

Để chạy các mẫu, bạn phải bật Dataflow API.

Ví dụ về quy trình Cloud Firestore

Các ví dụ dưới đây minh hoạ một quy trình ghi dữ liệu và một quy trình đọc và lọc dữ liệu. Bạn có thể sử dụng các mẫu này làm điểm khởi đầu cho quy trình của riêng mình.

Chạy quy trình mẫu

Bạn có thể tìm thấy mã nguồn cho các mẫu này trong kho lưu trữ GitHub googleapis/java-firestore. Để chạy các mẫu này, hãy tải mã nguồn xuống và xem README.

Quy trình Write mẫu

Ví dụ sau đây tạo các tài liệu trong tập hợp cities-beam-sample:

public class ExampleFirestoreBeamWrite {
  private static final FirestoreOptions FIRESTORE_OPTIONS = FirestoreOptions.getDefaultInstance();

  public static void main(String[] args) {
    runWrite(args, "cities-beam-sample");
  }

  public static void runWrite(String[] args, String collectionId) {
    // create pipeline options from the passed in arguments
    PipelineOptions options =
        PipelineOptionsFactory.fromArgs(args).withValidation().as(PipelineOptions.class);
    Pipeline pipeline = Pipeline.create(options);

    RpcQosOptions rpcQosOptions =
        RpcQosOptions.newBuilder()
            .withHintMaxNumWorkers(options.as(DataflowPipelineOptions.class).getMaxNumWorkers())
            .build();

    // create some writes
    Write write1 =
        Write.newBuilder()
            .setUpdate(
                Document.newBuilder()
                    // resolves to
                    // projects/<projectId>/databases/<databaseId>/documents/<collectionId>/NYC
                    .setName(createDocumentName(collectionId, "NYC"))
                    .putFields("name", Value.newBuilder().setStringValue("New York City").build())
                    .putFields("state", Value.newBuilder().setStringValue("New York").build())
                    .putFields("country", Value.newBuilder().setStringValue("USA").build()))
            .build();

    Write write2 =
        Write.newBuilder()
            .setUpdate(
                Document.newBuilder()
                    // resolves to
                    // projects/<projectId>/databases/<databaseId>/documents/<collectionId>/TOK
                    .setName(createDocumentName(collectionId, "TOK"))
                    .putFields("name", Value.newBuilder().setStringValue("Tokyo").build())
                    .putFields("country", Value.newBuilder().setStringValue("Japan").build())
                    .putFields("capital", Value.newBuilder().setBooleanValue(true).build()))
            .build();

    // batch write the data
    pipeline
        .apply(Create.of(write1, write2))
        .apply(FirestoreIO.v1().write().batchWrite().withRpcQosOptions(rpcQosOptions).build());

    // run the pipeline
    pipeline.run().waitUntilFinish();
  }

  private static String createDocumentName(String collectionId, String cityDocId) {
    String documentPath =
        String.format(
            "projects/%s/databases/%s/documents",
            FIRESTORE_OPTIONS.getProjectId(), FIRESTORE_OPTIONS.getDatabaseId());

    return documentPath + "/" + collectionId + "/" + cityDocId;
  }
}

Ví dụ này sử dụng các đối số sau để định cấu hình và chạy quy trình:

GOOGLE_CLOUD_PROJECT=project-id
REGION=region
TEMP_LOCATION=gs://temp-bucket/temp/
NUM_WORKERS=number-workers
MAX_NUM_WORKERS=max-number-workers

Quy trình Read mẫu

Quy trình mẫu sau đây đọc tài liệu từ bộ sưu tập cities-beam-sample, áp dụng bộ lọc cho tài liệu mà trường country được đặt thành USA và trả về tên của các tài liệu trùng khớp.

public class ExampleFirestoreBeamRead {

  public static void main(String[] args) {
    runRead(args, "cities-beam-sample");
  }

  public static void runRead(String[] args, String collectionId) {
    FirestoreOptions firestoreOptions = FirestoreOptions.getDefaultInstance();

    PipelineOptions options =
        PipelineOptionsFactory.fromArgs(args).withValidation().as(PipelineOptions.class);
    Pipeline pipeline = Pipeline.create(options);

    RpcQosOptions rpcQosOptions =
        RpcQosOptions.newBuilder()
            .withHintMaxNumWorkers(options.as(DataflowPipelineOptions.class).getMaxNumWorkers())
            .build();

    pipeline
        .apply(Create.of(collectionId))
        .apply(
            new FilterDocumentsQuery(
                firestoreOptions.getProjectId(), firestoreOptions.getDatabaseId()))
        .apply(FirestoreIO.v1().read().runQuery().withRpcQosOptions(rpcQosOptions).build())
        .apply(
            ParDo.of(
                // transform each document to its name
                new DoFn<RunQueryResponse, String>() {
                  @ProcessElement
                  public void processElement(ProcessContext c) {
                    c.output(Objects.requireNonNull(c.element()).getDocument().getName());
                  }
                }))
        .apply(
            ParDo.of(
                // print the document name
                new DoFn<String, Void>() {
                  @ProcessElement
                  public void processElement(ProcessContext c) {
                    System.out.println(c.element());
                  }
                }));

    pipeline.run().waitUntilFinish();
  }

  private static final class FilterDocumentsQuery
      extends PTransform<PCollection<String>, PCollection<RunQueryRequest>> {

    private final String projectId;
    private final String databaseId;

    public FilterDocumentsQuery(String projectId, String databaseId) {
      this.projectId = projectId;
      this.databaseId = databaseId;
    }

    @Override
    public PCollection<RunQueryRequest> expand(PCollection<String> input) {
      return input.apply(
          ParDo.of(
              new DoFn<String, RunQueryRequest>() {
                @ProcessElement
                public void processElement(ProcessContext c) {
                  // select from collection "cities-collection-<uuid>"
                  StructuredQuery.CollectionSelector collection =
                      StructuredQuery.CollectionSelector.newBuilder()
                          .setCollectionId(Objects.requireNonNull(c.element()))
                          .build();
                  // filter where country is equal to USA
                  StructuredQuery.Filter countryFilter =
                      StructuredQuery.Filter.newBuilder()
                          .setFieldFilter(
                              StructuredQuery.FieldFilter.newBuilder()
                                  .setField(
                                      StructuredQuery.FieldReference.newBuilder()
                                          .setFieldPath("country")
                                          .build())
                                  .setValue(Value.newBuilder().setStringValue("USA").build())
                                  .setOp(StructuredQuery.FieldFilter.Operator.EQUAL))
                          .buildPartial();

                  RunQueryRequest runQueryRequest =
                      RunQueryRequest.newBuilder()
                          .setParent(DocumentRootName.format(projectId, databaseId))
                          .setStructuredQuery(
                              StructuredQuery.newBuilder()
                                  .addFrom(collection)
                                  .setWhere(countryFilter)
                                  .build())
                          .build();
                  c.output(runQueryRequest);
                }
              }));
    }
  }
}

Ví dụ này sử dụng các đối số sau để định cấu hình và chạy quy trình:

GOOGLE_CLOUD_PROJECT=project-id
REGION=region
TEMP_LOCATION=gs://temp-bucket/temp/
NUM_WORKERS=number-workers
MAX_NUM_WORKERS=max-number-workers

Giá

Việc chạy khối lượng công việc Cloud Firestore trong Dataflow sẽ làm phát sinh chi phí sử dụng Cloud Firestore và sử dụng Dataflow. Hoạt động sử dụng Dataflow sẽ được lập hoá đơn cho các tài nguyên mà các công việc của bạn sử dụng. Hãy xem trang thông tin về giá của Dataflow để biết thông tin chi tiết. Để biết giá của Cloud Firestore, hãy xem Trang giá.

Bước tiếp theo