Firebase Data Connect を使ってみる

このクイックスタートでは、本番環境の SQL インスタンスを使用してアプリケーションに Firebase Data Connect を作成する方法について説明します。次のことを行います。

  • Firebase プロジェクトに Firebase Data Connect を追加します。
  • アプリ用に Cloud SQL インスタンスをプロビジョニングします。
  • 本番環境インスタンスで動作する Visual Studio Code 拡張機能を含む開発環境を設定します。
  • 次に、次のことを行う方法を説明します。
    • 映画アプリのスキーマを作成する
    • アプリで使用するクエリとミューテーションを定義する
    • サンプルデータを使用してクエリとミューテーションをテストする
    • 厳格に型指定された SDK を生成し、アプリで使用する
    • 最終的なスキーマ、クエリ、データをクラウドにデプロイします。

Firebase プロジェクトと Cloud SQL データベースを作成する

  1. まだ作成していない場合は、Firebase プロジェクトを作成します。
    1. Firebase コンソールで [プロジェクトを追加] をクリックし、画面上の手順に沿って操作します。
  2. Firebase コンソールの [Data Connect] セクションに移動し、プロダクトの設定ワークフローに沿って操作します。
  3. プロジェクトを Blaze プランにアップグレードします。これにより、Cloud SQL for PostgreSQL インスタンスを作成できます。

  4. CloudSQL for PostgreSQL データベースのロケーションを選択します。

  5. プロジェクト、サービス、データベースの名前と ID をメモして、後で確認できるようにします。

  6. 残りの設定フローに沿って、[完了] をクリックします。

開発フローを選択する

Data Connect には、開発ツールをインストールする 2 つの方法があります。

開発環境を設定する

  1. ローカル プロジェクト用の新しいディレクトリを作成します。
  2. 作成した新しいディレクトリで次のコマンドを実行します。

      curl -sL https://firebase.tools/dataconnect | bash

    このスクリプトは、開発環境をセットアップし、ブラウザベースの IDE を起動しようとします。この IDE には、事前バンドルの VS Code 拡張機能などのツールが用意されており、スキーマの管理、アプリケーションで使用するクエリとミューテーションの定義、強力な型付けの SDK の生成に役立ちます。

alias dataconnect='curl -sL https://firebase.tools/dataconnect | bash'

プロジェクト ディレクトリを設定する

ローカル プロジェクトを設定するには、プロジェクト ディレクトリを初期化します。IDE ウィンドウの左側のパネルで Firebase アイコンをクリックして、Data Connect VS Code 拡張機能の UI を開きます。

  1. [Google でログイン] ボタンをクリックします。
  2. [Firebase プロジェクトを接続] ボタンをクリックし、コンソールで前に作成したプロジェクトを選択します。
  3. [Run firebase init] ボタンをクリックして、フローを完了します。
  4. [Start emulators] ボタンをクリックします。

スキーマの作成

Firebase プロジェクト ディレクトリの /dataconnect/schema/schema.gql ファイルで、映画を含む GraphQL スキーマの定義を開始します。

映画

Data Connect では、GraphQL フィールドは列にマッピングされます。Movie 型には、idtitleimageUrlgenre があります。Data Connect は、プリミティブ データ型 StringUUID を認識します。

次のスニペットをコピーするか、ファイル内の対応する行のコメント化を解除します。

# File `/dataconnect/schema/schema.gql`

# By default, a UUID id key will be created by default as primary key.
type Movie @table {
  id: UUID! @default(expr: "uuidV4()")
  title: String!
  imageUrl: String!
  genre: String
}

MovieMetadata

映画が作成されたので、映画のメタデータをモデル化できます。

次のスニペットをコピーするか、ファイル内の対応する行のコメント化を解除します。

# Movie - MovieMetadata is a one-to-one relationship
type MovieMetadata @table {
  # This time, we omit adding a primary key because
  # you can rely on Data Connect to manage it.

  # @unique indicates a 1-1 relationship
  movie: Movie! @unique
  # movieId: UUID <- this is created by the above reference
  rating: Float
  releaseYear: Int
  description: String
}

movie フィールドは Movie 型にマッピングされています。Data Connect は、これが MovieMovieMetadata の関係であることを理解し、この関係を管理します。

Data Connect スキーマの詳細については、ドキュメントをご覧ください

スキーマを本番環境にデプロイする

続行する前にスキーマをデプロイする必要があります。

拡張機能の UI の Firebase Data Connect パネルで、[本番環境にデプロイ] をクリックします。

スキーマを本番環境データベースにデプロイすると、Firebase コンソールでスキーマを表示できるようになります。

テーブルにデータを追加する

IDE エディタパネルでは、/dataconnect/schema/schema.gql の GraphQL 型の上に CodeLens ボタンが表示されます。スキーマを本番環境にデプロイしたので、[データを追加] ボタンと [実行(本番環境)] ボタンを使用して、バックエンドのデータベースにデータを追加できます。

Movie テーブルにレコードを追加するには:

  1. schema.gql で、Movie 型宣言の上にある [データを追加] ボタンをクリックします。
    Firebase Data Connect の Code Lens の [データの追加] ボタン
  2. 生成された Movie_insert.gql ファイルで、4 つのフィールドのデータをハードコードします。
  3. [実行(本番環境)] ボタンをクリックします。
    Firebase Data Connect の Code Lens 実行ボタン
  4. 前の手順を繰り返して MovieMetadata テーブルにレコードを追加し、生成された MovieMetadata_insert ミューテーションのプロンプトが表示されたら、movieId フィールドに Movie の id を指定します。

データが追加されたことをすばやく確認するには:

  1. schema.gql に戻り、Movie 型宣言の上にある [データの読み取り] ボタンをクリックします。
  2. 生成された Movie_read.gql ファイルで、[実行(本番環境)] ボタンをクリックしてクエリを実行します。

Data Connect ミューテーションの詳細については、ドキュメントをご覧ください

クエリを定義する

次はクエリです。デベロッパーは GraphQL クエリではなく SQL クエリの作成に慣れているため、最初は少し違和感があるかもしれません。ただし、GraphQL は、未加工の SQL よりもはるかに簡潔で型安全です。また、VS Code 拡張機能により、開発が容易になります。

/dataconnect/connector/queries.gql ファイルを編集します。すべての映画を取得するには、次のようなクエリを使用します。

# File `/dataconnect/connector/queries.gql`

# @auth() directives control who can call each operation.
# Anyone should be able to list all movies, so the auth level
# is set to PUBLIC
query ListMovies @auth(level: PUBLIC) {
  movies {
    id
    title
    imageUrl
    genre
  }
}

近くの CodeLens ボタンを使用してクエリを実行します。

Data Connect クエリの詳細については、ドキュメントをご覧ください

SDK を生成し、アプリで使用する

  1. [Add SDK to app] ボタンをクリックします。
  2. 表示されたダイアログで、アプリのコードを含むディレクトリを選択します。Data Connect SDK コードが生成され、そこに保存されます。

  3. アプリ プラットフォームを選択し、選択したディレクトリに SDK コードがすぐに生成されることを確認します。

生成された SDK を使用して、クライアント アプリ(ウェブAndroidiOSFlutter)からクエリとミューテーションを呼び出す方法を学びます。

スキーマとクエリを本番環境にデプロイする

開発のイテレーションを完了しました。これで、スキーマの場合と同様に、Firebase 拡張機能の UI または Firebase CLI を使用して、スキーマ、データ、クエリをサーバーにデプロイできます。

IDE ウィンドウの VS Code 拡張機能 UI で、[Deploy to production] ボタンをクリックします。

デプロイしたら、Firebase コンソールに移動して、スキーマ、オペレーション、データがクラウドにアップロードされていることを確認します。スキーマを表示し、コンソールでオペレーションを実行できるはずです。Cloud SQL for PostgreSQL インスタンスは、最終的にデプロイされた生成されたスキーマとデータで更新されます。

Data Connect エミュレータの使用方法については、ドキュメントをご覧ください

次のステップ

デプロイされたプロジェクトを確認し、その他のツールを確認する。

  • Firebase コンソールで、データベースにデータを追加したり、スキーマを検査、変更したり、Data Connect サービスをモニタリングしたりします。詳しくは、ドキュメントをご覧ください。たとえば、クイックスタートを完了したので、次のようにします。

  • 詳しくは、スキーマ、クエリ、ミューテーションの開発をご覧ください。

  • ウェブAndroidiOSFlutter のクライアント コードからクライアント SDK を生成して、クエリとミューテーションを呼び出す方法について学びます。