किसी मॉडल को हर कॉल में, मॉडल कॉन्फ़िगरेशन भेजा जा सकता है. इससे यह कंट्रोल किया जा सकता है कि मॉडल, जवाब कैसे जनरेट करता है. हर मॉडल, कॉन्फ़िगरेशन के अलग-अलग विकल्प उपलब्ध कराता है.
प्रॉम्प्ट और मॉडल कॉन्फ़िगरेशन के साथ प्रयोग किया जा सकता है. साथ ही, Vertex AI Studio का इस्तेमाल करके, तेज़ी से बदलाव किए जा सकते हैं.
Gemini कॉन्फ़िगरेशन के विकल्पों पर जाएं Imagen कॉन्फ़िगरेशन के विकल्पों पर जाएं
Gemini मॉडल के लिए कॉन्फ़िगरेशन के विकल्प
इस सेक्शन में, Gemini मॉडल के साथ इस्तेमाल करने के लिए, कॉन्फ़िगरेशन सेट अप करने का तरीका बताया गया है. साथ ही, इसमें हर पैरामीटर की जानकारी भी दी गई है.
Gemini मॉडल के लिए मॉडल कॉन्फ़िगरेशन सेट अप करना
इस पेज के अगले सेक्शन में, हर पैरामीटर की जानकारी मिलेगी.
Gemini मॉडल के साथ इस्तेमाल करने के लिए, हर पैरामीटर की जानकारी
यहां उपलब्ध पैरामीटर के बारे में खास जानकारी दी गई है. Google Cloud दस्तावेज़ में, पैरामीटर और उनकी वैल्यू की पूरी सूची देखी जा सकती है.
पैरामीटर | ब्यौरा | डिफ़ॉल्ट वैल्यू |
---|---|---|
ऑडियो का टाइमस्टैंप
audioTimestamp
|
यह एक बूलियन है, जो सिर्फ़ ऑडियो वाली इनपुट फ़ाइलों के लिए टाइमस्टैंप समझने की सुविधा चालू करता है. यह सिर्फ़ |
false |
फ़्रीक्वेंसी की वजह से होने वाली समस्या
frequencyPenalty
|
जनरेट किए गए जवाब में बार-बार दिखने वाले टोकन को शामिल करने की संभावना को कंट्रोल करता है. पॉज़िटिव वैल्यू, जनरेट किए गए कॉन्टेंट में बार-बार दिखने वाले टोकन को दंडित करती हैं. इससे, कॉन्टेंट दोहराए जाने की संभावना कम हो जाती है. |
--- |
ज़्यादा से ज़्यादा आउटपुट टोकन
maxOutputTokens
|
जवाब में जनरेट किए जा सकने वाले टोकन की ज़्यादा से ज़्यादा संख्या. | --- |
मौजूदगी की वजह से मिलने वाली पेनल्टी
presencePenalty
|
जनरेट किए गए जवाब में पहले से मौजूद टोकन शामिल करने की संभावना को कंट्रोल करता है. पॉज़िटिव वैल्यू, जनरेट किए गए कॉन्टेंट में पहले से मौजूद टोकन को दंडित करती हैं. इससे अलग-अलग तरह का कॉन्टेंट जनरेट होने की संभावना बढ़ जाती है. |
--- |
सीक्वेंस रोकना
stopSequences
|
इस पैरामीटर में उन स्ट्रिंग की सूची दी जाती है जिनके जवाब में मिलने पर, मॉडल को कॉन्टेंट जनरेट करना बंद करना होता है. | --- |
तापमान
temperature
|
इससे, जवाब में कितनी जानकारी शामिल होगी, यह तय होता है. कम तापमान पर, ज़्यादा सटीक जवाब मिलते हैं. वहीं, ज़्यादा तापमान पर, ज़्यादा अलग-अलग या क्रिएटिव जवाब मिलते हैं. |
यह मॉडल पर निर्भर करता है |
Top-K
topK
|
जनरेट किए गए कॉन्टेंट में, सबसे ज़्यादा इस्तेमाल होने वाले शब्दों की संख्या सीमित करता है. अगर टॉप-K की वैल्यू 1 है, तो इसका मतलब है कि चुना गया अगला टोकन, मॉडल की शब्दावली के सभी टोकन में से सबसे ज़्यादा संभावना वाला टोकन होना चाहिए. वहीं, अगर टॉप-K की वैल्यू n है, तो इसका मतलब है कि चुना गया अगला टोकन, सबसे ज़्यादा संभावना वाले n टोकन में से चुना जाना चाहिए. यह सब, सेट किए गए टेम्परेचर के आधार पर तय होता है.
|
यह मॉडल पर निर्भर करता है |
Top-P
topP
|
इससे जनरेट किए गए कॉन्टेंट की विविधता को कंट्रोल किया जाता है. टोकन, सबसे ज़्यादा संभावना (ऊपर दिए गए टॉप-K देखें) से लेकर सबसे कम संभावना वाले क्रम में चुने जाते हैं. ऐसा तब तक किया जाता है, जब तक उनकी संभावनाओं का योग, टॉप-P वैल्यू के बराबर न हो जाए. |
यह मॉडल पर निर्भर करता है |
Imagen मॉडल के लिए कॉन्फ़िगरेशन के विकल्प
इस सेक्शन में, Imagen मॉडल के साथ इस्तेमाल करने के लिए, कॉन्फ़िगरेशन सेट अप करने का तरीका बताया गया है. साथ ही, इसमें हर पैरामीटर की जानकारी भी दी गई है.
Imagen मॉडल के लिए मॉडल कॉन्फ़िगरेशन सेट अप करना
इस पेज के अगले सेक्शन में, हर पैरामीटर की जानकारी मिलेगी.
Imagen मॉडल के साथ इस्तेमाल करने के लिए, हर पैरामीटर की जानकारी
यहां उपलब्ध पैरामीटर के बारे में खास जानकारी दी गई है. Google Cloud दस्तावेज़ में, पैरामीटर और उनकी वैल्यू की पूरी सूची देखी जा सकती है.
पैरामीटर | ब्यौरा | डिफ़ॉल्ट वैल्यू |
---|---|---|
नेगेटिव प्रॉम्प्ट
negativePrompt
|
जनरेट की गई इमेज में क्या हटाना है, इसकी जानकारी
फ़िलहाल, |
--- |
नतीजों की संख्या
numberOfImages
|
हर अनुरोध के लिए जनरेट की गई इमेज की संख्या | Imagen 3 मॉडल के लिए, डिफ़ॉल्ट रूप से एक इमेज |
आसपेक्ट रेशियो
aspectRatio
|
जनरेट की गई इमेज की चौड़ाई-ऊंचाई का अनुपात | डिफ़ॉल्ट रूप से स्क्वेयर (1:1) |
इमेज का फ़ॉर्मैट
imageFormat
|
आउटपुट के विकल्प, जैसे कि इमेज फ़ॉर्मैट (MIME टाइप) और जनरेट की गई इमेज के कंप्रेस होने का लेवल | डिफ़ॉल्ट MIME टाइप PNG है डिफ़ॉल्ट कंप्रेसन 75 है (अगर MIME टाइप JPEG पर सेट है) |
वॉटरमार्क
addWatermark
|
जनरेट की गई इमेज में, दिखने वाला डिजिटल वॉटरमार्क (जिसे SynthID कहा जाता है) जोड़ना है या नहीं | Imagen 3 मॉडल के लिए डिफ़ॉल्ट तौर पर true सेट होता है
|
व्यक्ति की जानकारी जनरेट करना
personGeneration
|
मॉडल की मदद से लोगों की इमेज जनरेट करने की अनुमति है या नहीं | डिफ़ॉल्ट तौर पर, यह मॉडल पर निर्भर करता है |
कॉन्टेंट जनरेशन को कंट्रोल करने के अन्य विकल्प
- प्रॉम्प्ट डिज़ाइन के बारे में ज़्यादा जानें, ताकि आप अपनी ज़रूरतों के हिसाब से आउटपुट जनरेट करने के लिए, मॉडल पर असर डाल सकें.
- सुरक्षा सेटिंग का इस्तेमाल करके, ऐसे जवाबों की संभावना को कम करें जिन्हें नुकसान पहुंचाने वाला माना जा सकता है. इनमें नफ़रत फैलाने वाली भाषा और साफ़ तौर पर सेक्शुअल ऐक्ट दिखाने वाला कॉन्टेंट शामिल है.
- मॉडल के व्यवहार को कंट्रोल करने के लिए, सिस्टम के निर्देश सेट करें. यह सुविधा, "प्रीऐब्सटेंस" की तरह है. इसे मॉडल को असली उपयोगकर्ता से मिलने वाले निर्देशों के ज़रिए इस्तेमाल करने से पहले जोड़ा जाता है.
- किसी खास आउटपुट स्कीमा की जानकारी देने के लिए, प्रॉम्प्ट के साथ रिस्पॉन्स स्कीमा पास करें. आम तौर पर, JSON आउटपुट जनरेट करने के लिए इस सुविधा का इस्तेमाल किया जाता है. हालांकि, इसका इस्तेमाल वर्गीकरण के टास्क के लिए भी किया जा सकता है. जैसे, जब आपको मॉडल को किसी खास लेबल या टैग का इस्तेमाल करना हो.