আপনার অ্যাপ থেকে একটি Google ক্লাউড API কল করার জন্য, আপনাকে একটি মধ্যবর্তী REST API তৈরি করতে হবে যা অনুমোদন পরিচালনা করে এবং API কীগুলির মতো গোপন মানগুলিকে রক্ষা করে। তারপরে আপনাকে এই মধ্যবর্তী পরিষেবার সাথে প্রমাণীকরণ এবং যোগাযোগ করতে আপনার মোবাইল অ্যাপে কোড লিখতে হবে৷
এই REST API তৈরি করার একটি উপায় হল Firebase প্রমাণীকরণ এবং ফাংশনগুলি ব্যবহার করা, যা আপনাকে Google ক্লাউড API-এর একটি পরিচালিত, সার্ভারহীন গেটওয়ে দেয় যা প্রমাণীকরণ পরিচালনা করে এবং পূর্ব-নির্মিত SDK সহ আপনার মোবাইল অ্যাপ থেকে কল করা যেতে পারে।
আপনার অ্যাপ থেকে ক্লাউড ভিশন API কল করতে এই কৌশলটি কীভাবে ব্যবহার করবেন তা এই নির্দেশিকাটি প্রদর্শন করে৷ এই পদ্ধতিটি সমস্ত প্রমাণীকৃত ব্যবহারকারীদের আপনার ক্লাউড প্রকল্পের মাধ্যমে ক্লাউড ভিশন বিল করা পরিষেবাগুলি অ্যাক্সেস করার অনুমতি দেবে, তাই এগিয়ে যাওয়ার আগে এই প্রমাণীকরণ প্রক্রিয়াটি আপনার ব্যবহারের ক্ষেত্রে যথেষ্ট কিনা তা বিবেচনা করুন।
আপনি শুরু করার আগে
আপনার প্রকল্প কনফিগার করুন
- যদি আপনি ইতিমধ্যেই না করে থাকেন তাহলে আপনার Android প্রকল্পে Firebase যোগ করুন ।
আপনি যদি ইতিমধ্যে আপনার প্রকল্পের জন্য ক্লাউড-ভিত্তিক API সক্ষম না করে থাকেন তবে এখনই তা করুন:
- Firebase কনসোলের Firebase ML APIs পৃষ্ঠা খুলুন।
আপনি যদি ইতিমধ্যেই আপনার প্রোজেক্টকে ব্লেজ প্রাইসিং প্ল্যানে আপগ্রেড না করে থাকেন, তা করতে আপগ্রেড এ ক্লিক করুন। (যদি আপনার প্রকল্পটি ব্লেজ প্ল্যানে না থাকে তবেই আপনাকে আপগ্রেড করার জন্য অনুরোধ করা হবে।)
শুধুমাত্র ব্লেজ-স্তরের প্রকল্পগুলি ক্লাউড-ভিত্তিক API ব্যবহার করতে পারে।
- যদি ক্লাউড-ভিত্তিক APIগুলি ইতিমধ্যে সক্ষম না থাকে, তাহলে ক্লাউড-ভিত্তিক APIগুলি সক্ষম করুন ক্লিক করুন৷
- Configure your existing Firebase API keys to disallow access to the Cloud Vision API:
- Open the Credentials page of the Cloud console.
- তালিকার প্রতিটি API কী-এর জন্য, সম্পাদনা দৃশ্য খুলুন এবং কী বিধিনিষেধ বিভাগে, ক্লাউড ভিশন API ছাড়া সমস্ত উপলব্ধ API তালিকায় যোগ করুন।
Deploy the callable function
Next, deploy the Cloud Function you will use to bridge your app and the Cloud Vision API. The functions-samples
repository contains an example you can use.
By default, accessing the Cloud Vision API through this function will allow only authenticated users of your app access to the Cloud Vision API. আপনি বিভিন্ন প্রয়োজনীয়তার জন্য ফাংশন পরিবর্তন করতে পারেন.
ফাংশন স্থাপন করতে:
- ফাংশন-নমুনা রেপো ক্লোন করুন বা ডাউনলোড করুন এবং
Node-1st-gen/vision-annotate-image
ডিরেক্টরিতে পরিবর্তন করুন:git clone https://github.com/firebase/functions-samples
cd Node-1st-gen/vision-annotate-image
- নির্ভরতা ইনস্টল করুন:
cd functions
npm install
cd ..
- আপনার কাছে Firebase CLI না থাকলে, এটি ইনস্টল করুন ।
- Initialize a Firebase project in the
vision-annotate-image
directory. অনুরোধ করা হলে, তালিকায় আপনার প্রকল্প নির্বাচন করুন।firebase init
- ফাংশন স্থাপন করুন:
firebase deploy --only functions:annotateImage
আপনার অ্যাপে Firebase Auth যোগ করুন
The callable function deployed above will reject any request from non-authenticated users of your app. আপনি যদি ইতিমধ্যে এটি না করে থাকেন, তাহলে আপনাকে আপনার অ্যাপে Firebase Auth যোগ করতে হবে।
আপনার অ্যাপে প্রয়োজনীয় নির্ভরতা যোগ করুন
<project>/<app-module>/build.gradle.kts
বা <project>/<app-module>/build.gradle
): implementation("com.google.firebase:firebase-functions:21.0.0") implementation("com.google.code.gson:gson:2.8.6")
এখন আপনি চিত্রগুলিতে পাঠ্য সনাক্তকরণ শুরু করতে প্রস্তুত৷
1. Prepare the input image
ক্লাউড ভিশন কল করার জন্য, ছবিটি একটি বেস 64-এনকোডেড স্ট্রিং হিসাবে ফর্ম্যাট করা আবশ্যক। একটি সংরক্ষিত ফাইল URI থেকে একটি ছবি প্রক্রিয়া করতে:- একটি
Bitmap
অবজেক্ট হিসাবে ছবিটি পান:Kotlin+KTX
var bitmap: Bitmap = MediaStore.Images.Media.getBitmap(contentResolver, uri)
Java
Bitmap bitmap = MediaStore.Images.Media.getBitmap(getContentResolver(), uri);
- Optionally, scale down the image to save on bandwidth. ক্লাউড ভিশন প্রস্তাবিত চিত্র আকার দেখুন.
Kotlin+KTX
private fun scaleBitmapDown(bitmap: Bitmap, maxDimension: Int): Bitmap { val originalWidth = bitmap.width val originalHeight = bitmap.height var resizedWidth = maxDimension var resizedHeight = maxDimension if (originalHeight > originalWidth) { resizedHeight = maxDimension resizedWidth = (resizedHeight * originalWidth.toFloat() / originalHeight.toFloat()).toInt() } else if (originalWidth > originalHeight) { resizedWidth = maxDimension resizedHeight = (resizedWidth * originalHeight.toFloat() / originalWidth.toFloat()).toInt() } else if (originalHeight == originalWidth) { resizedHeight = maxDimension resizedWidth = maxDimension } return Bitmap.createScaledBitmap(bitmap, resizedWidth, resizedHeight, false) }
Java
private Bitmap scaleBitmapDown(Bitmap bitmap, int maxDimension) { int originalWidth = bitmap.getWidth(); int originalHeight = bitmap.getHeight(); int resizedWidth = maxDimension; int resizedHeight = maxDimension; if (originalHeight > originalWidth) { resizedHeight = maxDimension; resizedWidth = (int) (resizedHeight * (float) originalWidth / (float) originalHeight); } else if (originalWidth > originalHeight) { resizedWidth = maxDimension; resizedHeight = (int) (resizedWidth * (float) originalHeight / (float) originalWidth); } else if (originalHeight == originalWidth) { resizedHeight = maxDimension; resizedWidth = maxDimension; } return Bitmap.createScaledBitmap(bitmap, resizedWidth, resizedHeight, false); }
Kotlin+KTX
// Scale down bitmap size bitmap = scaleBitmapDown(bitmap, 640)
Java
// Scale down bitmap size bitmap = scaleBitmapDown(bitmap, 640);
- Convert the bitmap object to a base64 encoded string:
Kotlin+KTX
// Convert bitmap to base64 encoded string val byteArrayOutputStream = ByteArrayOutputStream() bitmap.compress(Bitmap.CompressFormat.JPEG, 100, byteArrayOutputStream) val imageBytes: ByteArray = byteArrayOutputStream.toByteArray() val base64encoded = Base64.encodeToString(imageBytes, Base64.NO_WRAP)
Java
// Convert bitmap to base64 encoded string ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream(); bitmap.compress(Bitmap.CompressFormat.JPEG, 100, byteArrayOutputStream); byte[] imageBytes = byteArrayOutputStream.toByteArray(); String base64encoded = Base64.encodeToString(imageBytes, Base64.NO_WRAP);
The image represented by the
Bitmap
object must be upright, with no additional rotation required. 2. টেক্সট সনাক্ত করতে কলযোগ্য ফাংশন আহ্বান করুন
একটি ছবিতে পাঠ্য সনাক্ত করতে, একটি JSON ক্লাউড ভিশন অনুরোধ পাস করে কলযোগ্য ফাংশনটি চালু করুন৷
প্রথমে, ক্লাউড ফাংশনগুলির একটি উদাহরণ শুরু করুন:
Kotlin+KTX
private lateinit var functions: FirebaseFunctions // ... functions = Firebase.functions
Java
private FirebaseFunctions mFunctions; // ... mFunctions = FirebaseFunctions.getInstance();
ফাংশন আহ্বান করার জন্য একটি পদ্ধতি সংজ্ঞায়িত করুন:
Kotlin+KTX
private fun annotateImage(requestJson: String): Task<JsonElement> { return functions .getHttpsCallable("annotateImage") .call(requestJson) .continueWith { task -> // This continuation runs on either success or failure, but if the task // has failed then result will throw an Exception which will be // propagated down. val result = task.result?.data JsonParser.parseString(Gson().toJson(result)) } }
Java
private Task<JsonElement> annotateImage(String requestJson) { return mFunctions .getHttpsCallable("annotateImage") .call(requestJson) .continueWith(new Continuation<HttpsCallableResult, JsonElement>() { @Override public JsonElement then(@NonNull Task<HttpsCallableResult> task) { // This continuation runs on either success or failure, but if the task // has failed then getResult() will throw an Exception which will be // propagated down. return JsonParser.parseString(new Gson().toJson(task.getResult().getData())); } }); }
JSON অনুরোধ তৈরি করুন। ক্লাউড ভিশন API দুই ধরনের পাঠ্য সনাক্তকরণ সমর্থন করে:
TEXT_DETECTION
এবংDOCUMENT_TEXT_DETECTION
। দুটি ব্যবহারের ক্ষেত্রে পার্থক্যের জন্য ক্লাউড ভিশন ওসিআর ডক্স দেখুন।Kotlin+KTX
// Create json request to cloud vision val request = JsonObject() // Add image to request val image = JsonObject() image.add("content", JsonPrimitive(base64encoded)) request.add("image", image) // Add features to the request val feature = JsonObject() feature.add("type", JsonPrimitive("TEXT_DETECTION")) // Alternatively, for DOCUMENT_TEXT_DETECTION: // feature.add("type", JsonPrimitive("DOCUMENT_TEXT_DETECTION")) val features = JsonArray() features.add(feature) request.add("features", features)
Java
// Create json request to cloud vision JsonObject request = new JsonObject(); // Add image to request JsonObject image = new JsonObject(); image.add("content", new JsonPrimitive(base64encoded)); request.add("image", image); //Add features to the request JsonObject feature = new JsonObject(); feature.add("type", new JsonPrimitive("TEXT_DETECTION")); // Alternatively, for DOCUMENT_TEXT_DETECTION: //feature.add("type", new JsonPrimitive("DOCUMENT_TEXT_DETECTION")); JsonArray features = new JsonArray(); features.add(feature); request.add("features", features);
ঐচ্ছিকভাবে, ভাষা সনাক্তকরণে সহায়তা করার জন্য ভাষার ইঙ্গিত প্রদান করুন ( সমর্থিত ভাষাগুলি দেখুন):
Kotlin+KTX
val imageContext = JsonObject() val languageHints = JsonArray() languageHints.add("en") imageContext.add("languageHints", languageHints) request.add("imageContext", imageContext)
Java
JsonObject imageContext = new JsonObject(); JsonArray languageHints = new JsonArray(); languageHints.add("en"); imageContext.add("languageHints", languageHints); request.add("imageContext", imageContext);
অবশেষে, ফাংশনটি আহ্বান করুন:
Kotlin+KTX
annotateImage(request.toString()) .addOnCompleteListener { task -> if (!task.isSuccessful) { // Task failed with an exception // ... } else { // Task completed successfully // ... } }
Java
annotateImage(request.toString()) .addOnCompleteListener(new OnCompleteListener<JsonElement>() { @Override public void onComplete(@NonNull Task<JsonElement> task) { if (!task.isSuccessful()) { // Task failed with an exception // ... } else { // Task completed successfully // ... } } });
3. স্বীকৃত পাঠ্যের ব্লক থেকে পাঠ্য বের করুন
পাঠ্য শনাক্তকরণ অপারেশন সফল হলে, টাস্কের ফলাফলে BatchAnnotateImagesResponse- এর একটি JSON প্রতিক্রিয়া ফেরত দেওয়া হবে। টেক্সট টীকাগুলিfullTextAnnotation
অবজেক্টে পাওয়া যাবে। আপনি text
ক্ষেত্রে একটি স্ট্রিং হিসাবে স্বীকৃত পাঠ্য পেতে পারেন। যেমন:
Kotlin+KTX
val annotation = task.result!!.asJsonArray[0].asJsonObject["fullTextAnnotation"].asJsonObject
System.out.format("%nComplete annotation:")
System.out.format("%n%s", annotation["text"].asString)
Java
JsonObject annotation = task.getResult().getAsJsonArray().get(0).getAsJsonObject().get("fullTextAnnotation").getAsJsonObject();
System.out.format("%nComplete annotation:%n");
System.out.format("%s%n", annotation.get("text").getAsString());
You can also get information specific to regions of the image. প্রতিটি block
, paragraph
, word
এবং symbol
জন্য, আপনি অঞ্চলে স্বীকৃত পাঠ্য এবং অঞ্চলের সীমাবদ্ধ স্থানাঙ্ক পেতে পারেন। যেমন:
Kotlin+KTX
for (page in annotation["pages"].asJsonArray) {
var pageText = ""
for (block in page.asJsonObject["blocks"].asJsonArray) {
var blockText = ""
for (para in block.asJsonObject["paragraphs"].asJsonArray) {
var paraText = ""
for (word in para.asJsonObject["words"].asJsonArray) {
var wordText = ""
for (symbol in word.asJsonObject["symbols"].asJsonArray) {
wordText += symbol.asJsonObject["text"].asString
System.out.format(
"Symbol text: %s (confidence: %f)%n",
symbol.asJsonObject["text"].asString,
symbol.asJsonObject["confidence"].asFloat,
)
}
System.out.format(
"Word text: %s (confidence: %f)%n%n",
wordText,
word.asJsonObject["confidence"].asFloat,
)
System.out.format("Word bounding box: %s%n", word.asJsonObject["boundingBox"])
paraText = String.format("%s%s ", paraText, wordText)
}
System.out.format("%nParagraph: %n%s%n", paraText)
System.out.format("Paragraph bounding box: %s%n", para.asJsonObject["boundingBox"])
System.out.format("Paragraph Confidence: %f%n", para.asJsonObject["confidence"].asFloat)
blockText += paraText
}
pageText += blockText
}
}
Java
for (JsonElement page : annotation.get("pages").getAsJsonArray()) {
StringBuilder pageText = new StringBuilder();
for (JsonElement block : page.getAsJsonObject().get("blocks").getAsJsonArray()) {
StringBuilder blockText = new StringBuilder();
for (JsonElement para : block.getAsJsonObject().get("paragraphs").getAsJsonArray()) {
StringBuilder paraText = new StringBuilder();
for (JsonElement word : para.getAsJsonObject().get("words").getAsJsonArray()) {
StringBuilder wordText = new StringBuilder();
for (JsonElement symbol : word.getAsJsonObject().get("symbols").getAsJsonArray()) {
wordText.append(symbol.getAsJsonObject().get("text").getAsString());
System.out.format("Symbol text: %s (confidence: %f)%n", symbol.getAsJsonObject().get("text").getAsString(), symbol.getAsJsonObject().get("confidence").getAsFloat());
}
System.out.format("Word text: %s (confidence: %f)%n%n", wordText.toString(), word.getAsJsonObject().get("confidence").getAsFloat());
System.out.format("Word bounding box: %s%n", word.getAsJsonObject().get("boundingBox"));
paraText.append(wordText.toString()).append(" ");
}
System.out.format("%nParagraph:%n%s%n", paraText);
System.out.format("Paragraph bounding box: %s%n", para.getAsJsonObject().get("boundingBox"));
System.out.format("Paragraph Confidence: %f%n", para.getAsJsonObject().get("confidence").getAsFloat());
blockText.append(paraText);
}
pageText.append(blockText);
}
}