Ikuti semua informasi yang diumumkan di Firebase Summit, dan pelajari bagaimana Firebase dapat membantu Anda mempercepat pengembangan aplikasi dan menjalankan aplikasi dengan percaya diri. Pelajari Lebih Lanjut

Kenali Landmark dengan Firebase ML di Android

Anda dapat menggunakan Firebase ML untuk mengenali bangunan terkenal dalam sebuah gambar.

Sebelum kamu memulai

  1. Jika Anda belum melakukannya, tambahkan Firebase ke proyek Android Anda .
  2. Dalam file Gradle modul (level aplikasi) Anda (biasanya <project>/<app-module>/build.gradle ), tambahkan dependensi untuk library Android Firebase ML Vision. Kami merekomendasikan penggunaan Firebase Android BoM untuk mengontrol pembuatan versi library.
    dependencies {
        // Import the BoM for the Firebase platform
        implementation platform('com.google.firebase:firebase-bom:31.2.0')
    
        // Add the dependency for the Firebase ML Vision library
        // When using the BoM, you don't specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision'
    }
    

    Dengan menggunakan Firebase Android BoM , aplikasi Anda akan selalu menggunakan versi pustaka Android Firebase yang kompatibel.

    (Alternatif) Tambahkan dependensi library Firebase tanpa menggunakan BoM

    Jika Anda memilih untuk tidak menggunakan Firebase BoM, Anda harus menentukan setiap versi pustaka Firebase di baris dependensinya.

    Perhatikan bahwa jika Anda menggunakan beberapa pustaka Firebase di aplikasi Anda, kami sangat menyarankan penggunaan BoM untuk mengelola versi pustaka, yang memastikan bahwa semua versi kompatibel.

    dependencies {
        // Add the dependency for the Firebase ML Vision library
        // When NOT using the BoM, you must specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision:24.1.0'
    }
    
  3. Jika Anda belum mengaktifkan API berbasis Cloud untuk proyek Anda, lakukan sekarang:

    1. Buka halaman API Firebase ML dari konsol Firebase.
    2. Jika Anda belum mengupgrade proyek Anda ke paket harga Blaze, klik Upgrade untuk melakukannya. (Anda akan diminta untuk memutakhirkan hanya jika proyek Anda tidak termasuk dalam paket Blaze.)

      Hanya project level Blaze yang dapat menggunakan API berbasis Cloud.

    3. Jika API berbasis Cloud belum diaktifkan, klik Aktifkan API berbasis Cloud .

Konfigurasikan detektor bangunan terkenal

Secara default, pendeteksi Cloud menggunakan versi model STABLE dan menampilkan hingga 10 hasil. Jika Anda ingin mengubah salah satu setelan ini, tentukan dengan objek FirebaseVisionCloudDetectorOptions .

Misalnya, untuk mengubah kedua setelan default, buat objek FirebaseVisionCloudDetectorOptions seperti contoh berikut:

Kotlin+KTX

val options = FirebaseVisionCloudDetectorOptions.Builder()
        .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL)
        .setMaxResults(15)
        .build()

Java

FirebaseVisionCloudDetectorOptions options =
        new FirebaseVisionCloudDetectorOptions.Builder()
                .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL)
                .setMaxResults(15)
                .build();

Untuk menggunakan setelan default, Anda dapat menggunakan FirebaseVisionCloudDetectorOptions.DEFAULT di langkah berikutnya.

Jalankan detektor tengara

Untuk mengenali bangunan terkenal dalam gambar, buat objek FirebaseVisionImage dari Bitmap , media.Image , ByteBuffer , larik byte, atau file di perangkat. Kemudian, teruskan objek FirebaseVisionImage ke metode detectInImage dari FirebaseVisionCloudLandmarkDetector .

  1. Buat objek FirebaseVisionImage dari gambar Anda.

    • Untuk membuat objek FirebaseVisionImage dari objek media.Image , seperti saat mengambil gambar dari kamera perangkat, teruskan objek media.Image dan rotasi gambar ke FirebaseVisionImage.fromMediaImage() .

      Jika Anda menggunakan pustaka CameraX , kelas OnImageCapturedListener dan ImageAnalysis.Analyzer menghitung nilai rotasi untuk Anda, jadi Anda hanya perlu mengonversi rotasi ke salah satu konstanta ROTATION_ Firebase ML sebelum memanggil FirebaseVisionImage.fromMediaImage() :

      Kotlin+KTX

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Vision API
                  // ...
              }
          }
      }
      

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Vision API
              // ...
          }
      }
      

      Jika Anda tidak menggunakan pustaka kamera yang memberikan rotasi gambar, Anda dapat menghitungnya dari rotasi perangkat dan orientasi sensor kamera di perangkat:

      Kotlin+KTX

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kemudian, teruskan objek media.Image dan nilai rotasi ke FirebaseVisionImage.fromMediaImage() :

      Kotlin+KTX

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
    • Untuk membuat objek FirebaseVisionImage dari URI file, teruskan konteks aplikasi dan URI file ke FirebaseVisionImage.fromFilePath() . Ini berguna saat Anda menggunakan maksud ACTION_GET_CONTENT untuk meminta pengguna memilih gambar dari aplikasi galeri mereka.

      Kotlin+KTX

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }
    • Untuk membuat objek FirebaseVisionImage dari ByteBuffer atau larik byte, pertama-tama hitung rotasi gambar seperti yang dijelaskan di atas untuk input media.Image .

      Kemudian, buat objek FirebaseVisionImageMetadata yang berisi tinggi, lebar, format enkode warna, dan rotasi gambar:

      Kotlin+KTX

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Gunakan buffer atau larik, dan objek metadata, untuk membuat objek FirebaseVisionImage :

      Kotlin+KTX

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
    • Untuk membuat objek FirebaseVisionImage dari objek Bitmap :

      Kotlin+KTX

      val image = FirebaseVisionImage.fromBitmap(bitmap)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
      Gambar yang diwakili oleh objek Bitmap harus tegak, tanpa perlu rotasi tambahan.

  2. Dapatkan instance FirebaseVisionCloudLandmarkDetector :

    Kotlin+KTX

    val detector = FirebaseVision.getInstance()
            .visionCloudLandmarkDetector
    // Or, to change the default settings:
    // val detector = FirebaseVision.getInstance()
    //         .getVisionCloudLandmarkDetector(options)

    Java

    FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance()
            .getVisionCloudLandmarkDetector();
    // Or, to change the default settings:
    // FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance()
    //         .getVisionCloudLandmarkDetector(options);
  3. Terakhir, teruskan gambar ke metode detectInImage :

    Kotlin+KTX

    val result = detector.detectInImage(image)
            .addOnSuccessListener { firebaseVisionCloudLandmarks ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener { e ->
                // Task failed with an exception
                // ...
            }

    Java

    Task<List<FirebaseVisionCloudLandmark>> result = detector.detectInImage(image)
            .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionCloudLandmark>>() {
                @Override
                public void onSuccess(List<FirebaseVisionCloudLandmark> firebaseVisionCloudLandmarks) {
                    // Task completed successfully
                    // ...
                }
            })
            .addOnFailureListener(new OnFailureListener() {
                @Override
                public void onFailure(@NonNull Exception e) {
                    // Task failed with an exception
                    // ...
                }
            });

Dapatkan informasi tentang landmark yang dikenali

Jika operasi pengenalan bangunan terkenal berhasil, daftar objek FirebaseVisionCloudLandmark akan diteruskan ke pemroses yang berhasil. Setiap objek FirebaseVisionCloudLandmark merepresentasikan bangunan terkenal yang dikenali dalam gambar. Untuk setiap bangunan terkenal, Anda bisa mendapatkan koordinat pembatasnya di gambar input, nama bangunan terkenal, lintang dan bujurnya, ID entitas Grafik Pengetahuannya (jika tersedia), dan skor keyakinan kecocokan. Sebagai contoh:

Kotlin+KTX

for (landmark in firebaseVisionCloudLandmarks) {

    val bounds = landmark.boundingBox
    val landmarkName = landmark.landmark
    val entityId = landmark.entityId
    val confidence = landmark.confidence

    // Multiple locations are possible, e.g., the location of the depicted
    // landmark and the location the picture was taken.
    for (loc in landmark.locations) {
        val latitude = loc.latitude
        val longitude = loc.longitude
    }
}

Java

for (FirebaseVisionCloudLandmark landmark: firebaseVisionCloudLandmarks) {

    Rect bounds = landmark.getBoundingBox();
    String landmarkName = landmark.getLandmark();
    String entityId = landmark.getEntityId();
    float confidence = landmark.getConfidence();

    // Multiple locations are possible, e.g., the location of the depicted
    // landmark and the location the picture was taken.
    for (FirebaseVisionLatLng loc: landmark.getLocations()) {
        double latitude = loc.getLatitude();
        double longitude = loc.getLongitude();
    }
}

Langkah selanjutnya