Sie können ML Kit verwenden, um bekannte Orientierungspunkte in einem Bild zu erkennen.
Bevor Sie beginnen
- Wenn Sie Ihrer App Firebase noch nicht hinzugefügt haben, befolgen Sie dazu die Schritte im Leitfaden „Erste Schritte“ .
- Schließen Sie die ML Kit-Bibliotheken in Ihre Poddatei ein:
pod 'Firebase/MLVision', '6.25.0'
Nachdem Sie die Pods Ihres Projekts installiert oder aktualisiert haben, müssen Sie Ihr Xcode-Projekt mit seiner.xcworkspace
. - Importieren Sie in Ihrer App Firebase:
Schnell
import Firebase
Ziel c
@import Firebase;
Wenn Sie noch keine Cloud-basierten APIs für Ihr Projekt aktiviert haben, tun Sie dies jetzt:
- Öffnen Sie die Seite ML Kit APIs der Firebase-Konsole.
Wenn Sie Ihr Projekt noch nicht auf einen Blaze-Preisplan aktualisiert haben, klicken Sie dazu auf Upgrade . (Sie werden nur dann zum Upgrade aufgefordert, wenn Ihr Projekt nicht im Blaze-Plan enthalten ist.)
Nur Projekte auf Blaze-Ebene können Cloud-basierte APIs verwenden.
- Wenn Cloud-basierte APIs nicht bereits aktiviert sind, klicken Sie auf Cloud-basierte APIs aktivieren .
Konfigurieren Sie den Orientierungspunktdetektor
Standardmäßig verwendet der Wolkendetektor die stabile Version des Modells und gibt bis zu 10 Ergebnisse zurück. Wenn Sie eine dieser Einstellungen ändern möchten, geben Sie sie wie im folgenden Beispiel mit einem VisionCloudDetectorOptions
Objekt an:
Schnell
let options = VisionCloudDetectorOptions() options.modelType = .latest options.maxResults = 20
Ziel c
FIRVisionCloudDetectorOptions *options = [[FIRVisionCloudDetectorOptions alloc] init]; options.modelType = FIRVisionCloudModelTypeLatest; options.maxResults = 20;
Übergeben Sie im nächsten Schritt das VisionCloudDetectorOptions
Objekt, wenn Sie das Wolkendetektorobjekt erstellen.
Führen Sie den Orientierungspunktdetektor aus
Um Orientierungspunkte in einem Bild zu erkennen, übergeben Sie das Bild alsUIImage
oder CMSampleBufferRef
an die Methode detect(in:)
von VisionCloudLandmarkDetector
:- Holen Sie sich eine Instanz von
VisionCloudLandmarkDetector
:Schnell
lazy var vision = Vision.vision() let cloudDetector = vision.cloudLandmarkDetector(options: options) // Or, to use the default settings: // let cloudDetector = vision.cloudLandmarkDetector()
Ziel c
FIRVision *vision = [FIRVision vision]; FIRVisionCloudLandmarkDetector *landmarkDetector = [vision cloudLandmarkDetector]; // Or, to change the default settings: // FIRVisionCloudLandmarkDetector *landmarkDetector = // [vision cloudLandmarkDetectorWithOptions:options];
Erstellen Sie ein
VisionImage
Objekt mit einemUIImage
oder einemCMSampleBufferRef
.So verwenden Sie ein
UIImage
:- Drehen Sie das Bild bei Bedarf so, dass seine Eigenschaft
imageOrientation
.up
. - Erstellen Sie ein
VisionImage
-Objekt mit dem korrekt gedrehtenUIImage
. Geben Sie keine Rotationsmetadaten an – der Standardwert.topLeft
muss verwendet werden.Schnell
let image = VisionImage(image: uiImage)
Ziel c
FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];
So verwenden Sie eine
CMSampleBufferRef
:Erstellen Sie ein
VisionImageMetadata
Objekt, das die Ausrichtung der imCMSampleBufferRef
Puffer enthaltenen Bilddaten angibt.So erhalten Sie die Bildausrichtung:
Schnell
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> VisionDetectorImageOrientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftTop : .rightTop case .landscapeLeft: return cameraPosition == .front ? .bottomLeft : .topLeft case .portraitUpsideDown: return cameraPosition == .front ? .rightBottom : .leftBottom case .landscapeRight: return cameraPosition == .front ? .topRight : .bottomRight case .faceDown, .faceUp, .unknown: return .leftTop } }
Ziel c
- (FIRVisionDetectorImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationLeftTop; } else { return FIRVisionDetectorImageOrientationRightTop; } case UIDeviceOrientationLandscapeLeft: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationBottomLeft; } else { return FIRVisionDetectorImageOrientationTopLeft; } case UIDeviceOrientationPortraitUpsideDown: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationRightBottom; } else { return FIRVisionDetectorImageOrientationLeftBottom; } case UIDeviceOrientationLandscapeRight: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationTopRight; } else { return FIRVisionDetectorImageOrientationBottomRight; } default: return FIRVisionDetectorImageOrientationTopLeft; } }
Erstellen Sie dann das Metadatenobjekt:
Schnell
let cameraPosition = AVCaptureDevice.Position.back // Set to the capture device you used. let metadata = VisionImageMetadata() metadata.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition )
Ziel c
FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init]; AVCaptureDevicePosition cameraPosition = AVCaptureDevicePositionBack; // Set to the capture device you used. metadata.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
- Erstellen Sie ein
VisionImage
Objekt mit demCMSampleBufferRef
Objekt und den Rotationsmetadaten:Schnell
let image = VisionImage(buffer: sampleBuffer) image.metadata = metadata
Ziel c
FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:sampleBuffer]; image.metadata = metadata;
- Drehen Sie das Bild bei Bedarf so, dass seine Eigenschaft
- Übergeben Sie das Bild dann an die Methode
detect(in:)
:Schnell
cloudDetector.detect(in: visionImage) { landmarks, error in guard error == nil, let landmarks = landmarks, !landmarks.isEmpty else { // ... return } // Recognized landmarks // ... }
Ziel c
[landmarkDetector detectInImage:image completion:^(NSArray<FIRVisionCloudLandmark *> *landmarks, NSError *error) { if (error != nil) { return; } else if (landmarks != nil) { // Got landmarks } }];
Informieren Sie sich über die anerkannten Wahrzeichen
Wenn die Orientierungspunkterkennung erfolgreich ist, wird ein Array vonVisionCloudLandmark
Objekten an den Vervollständigungshandler übergeben. Von jedem Objekt können Sie Informationen über einen im Bild erkannten Orientierungspunkt erhalten.Zum Beispiel:
Schnell
for landmark in landmarks { let landmarkDesc = landmark.landmark let boundingPoly = landmark.frame let entityId = landmark.entityId // A landmark can have multiple locations: for example, the location the image // was taken, and the location of the landmark depicted. for location in landmark.locations { let latitude = location.latitude let longitude = location.longitude } let confidence = landmark.confidence }
Ziel c
for (FIRVisionCloudLandmark *landmark in landmarks) { NSString *landmarkDesc = landmark.landmark; CGRect frame = landmark.frame; NSString *entityId = landmark.entityId; // A landmark can have multiple locations: for example, the location the image // was taken, and the location of the landmark depicted. for (FIRVisionLatitudeLongitude *location in landmark.locations) { double latitude = [location.latitude doubleValue]; double longitude = [location.longitude doubleValue]; } float confidence = [landmark.confidence floatValue]; }
Nächste Schritte
- Bevor Sie eine App, die eine Cloud-API verwendet, für die Produktion bereitstellen, sollten Sie einige zusätzliche Schritte unternehmen, um die Auswirkungen eines nicht autorisierten API-Zugriffs zu verhindern und abzumildern .