Wykrywanie twarzy za pomocą ML Kit na iOS

Za pomocą pakietu ML Kit możesz wykrywać twarze na obrazach i w filmach.

Zanim zaczniesz

  1. Jeśli nie masz jeszcze w aplikacji dodanej Firebase, wykonaj czynności podane w przewodniku dla początkujących.
  2. Umieść biblioteki ML Kit w pliku Podfile:
    pod 'Firebase/MLVision', '6.25.0'
    # If you want to detect face contours (landmark detection and classification
    # don't require this additional model):
    pod 'Firebase/MLVisionFaceModel', '6.25.0'
    
    Po zainstalowaniu lub zaktualizowaniu podów projektu otwórz Xcode projektu korzystającego z: .xcworkspace.
  3. W aplikacji zaimportuj Firebase:

    Swift

    import Firebase

    Objective-C

    @import Firebase;

Wytyczne dotyczące obrazu wejściowego

Aby ML Kit mógł precyzyjnie wykrywać twarze, obrazy wejściowe muszą zawierać twarze które są reprezentowane przez wystarczającą ilość danych pikseli. Ogólnie rzecz biorąc, każda twarz, którą chcesz pokazać, powinna mieć rozmiar co najmniej 100 x 100 pikseli. Jeśli chcesz wykrywać aby określić kontury twarzy, ML Kit wymaga wyższej rozdzielczości: powinien wynosić co najmniej 200 x 200 pikseli.

Jeśli wykrywasz twarze w aplikacji działającej w czasie rzeczywistym, możesz też aby wziąć pod uwagę ogólne wymiary obrazów wejściowych. Mniejsze obrazy szybsze przetwarzanie, a więc aby zmniejszyć opóźnienie, można robić zdjęcia w niższej rozdzielczości. (pamiętając o powyższych wymaganiach dotyczących dokładności) i upewnij się, że twarz obiektu zajmuje jak najwięcej miejsca na obrazie. Zobacz też Wskazówki, jak zwiększyć skuteczność w czasie rzeczywistym.

Słaba ostrość obrazu może negatywnie wpływać na dokładność. Jeśli nie uzyskujesz akceptowalnych wyników, poproś użytkownika o ponowne zrobienie zdjęcia.

Położenie twarzy w odniesieniu do aparatu może też wpływać na jej wygląd. wykrywanych przez ML Kit. Zobacz Wykrywanie twarzy Pojęcia.

1. Konfigurowanie wykrywania twarzy

Zanim zastosujesz wykrywanie twarzy na zdjęciu, możesz zmienić domyślnych ustawień wykrywania twarzy, określ je za pomocą VisionFaceDetectorOptions. Możesz zmienić te ustawienia:

Ustawienia
performanceMode fast (domyślna) | accurate

Większa szybkość lub dokładność podczas wykrywania twarzy.

landmarkMode none (domyślna) | all

Czy próbować wykryć „punkty orientacyjne” — oczy, uszu, nosa, policzków, ust – wszystkich wykrytych twarzy.

contourMode none (domyślna) | all

Określa, czy wykrywać kontury rysów twarzy. Kontury są tylko dla najbardziej widocznej twarzy na zdjęciu.

classificationMode none (domyślna) | all

Możliwość sklasyfikowania twarzy w kategoriach, takich jak „uśmiech”, i „oczy otwarte”.

minFaceSize CGFloat (domyślnie: 0.1)

Minimalny rozmiar twarzy do wykrycia w odniesieniu do obrazu.

isTrackingEnabled false (domyślna) | true

Określa, czy przypisywać twarzom identyfikator, który może służyć do śledzenia i twarze na zdjęciach.

Pamiętaj, że przy włączonym wykrywaniu kontur tylko jedna twarz więc śledzenie twarzy nie da żadnych przydatnych wyników. Do tego celu i aby zwiększyć szybkość wykrywania, nie włączaj obu konturów wykrywaniem oraz śledzeniem twarzy.

Na przykład utwórz VisionFaceDetectorOptions. jak jeden z następujących przykładów:

Swift

// High-accuracy landmark detection and face classification
let options = VisionFaceDetectorOptions()
options.performanceMode = .accurate
options.landmarkMode = .all
options.classificationMode = .all

// Real-time contour detection of multiple faces
let options = VisionFaceDetectorOptions()
options.contourMode = .all

Objective-C

// High-accuracy landmark detection and face classification
FIRVisionFaceDetectorOptions *options = [[FIRVisionFaceDetectorOptions alloc] init];
options.performanceMode = FIRVisionFaceDetectorPerformanceModeAccurate;
options.landmarkMode = FIRVisionFaceDetectorLandmarkModeAll;
options.classificationMode = FIRVisionFaceDetectorClassificationModeAll;

// Real-time contour detection of multiple faces
FIRVisionFaceDetectorOptions *options = [[FIRVisionFaceDetectorOptions alloc] init];
options.contourMode = FIRVisionFaceDetectorContourModeAll;

2. Włącz wykrywanie twarzy

Aby wykrywać twarze na zdjęciu, przekaż je jako UIImage lub CMSampleBufferRef na: detect(in:): VisionFaceDetector :

  1. Pobierz instancję VisionFaceDetector:

    Swift

    lazy var vision = Vision.vision()
    
    let faceDetector = vision.faceDetector(options: options)

    Objective-C

    FIRVision *vision = [FIRVision vision];
    FIRVisionFaceDetector *faceDetector = [vision faceDetector];
    // Or, to change the default settings:
    // FIRVisionFaceDetector *faceDetector =
    //     [vision faceDetectorWithOptions:options];
  2. Utwórz obiekt VisionImage za pomocą UIImage lub CMSampleBufferRef.

    Aby użyć karty UIImage:

    1. W razie potrzeby obróć zdjęcie, tak by jego imageOrientation właściwość to .up.
    2. Utwórz obiekt VisionImage przy użyciu prawidłowo wykonanej rotacji UIImage Nie określaj żadnych metadanych rotacji – są to metadane domyślne. .topLeft.

      Swift

      let image = VisionImage(image: uiImage)

      Objective-C

      FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];

    Aby użyć karty CMSampleBufferRef:

    1. Utwórz obiekt VisionImageMetadata, który określa orientacji danych zdjęć zawartych w Bufor CMSampleBufferRef.

      Aby sprawdzić orientację obrazu:

      Swift

      func imageOrientation(
          deviceOrientation: UIDeviceOrientation,
          cameraPosition: AVCaptureDevice.Position
          ) -> VisionDetectorImageOrientation {
          switch deviceOrientation {
          case .portrait:
              return cameraPosition == .front ? .leftTop : .rightTop
          case .landscapeLeft:
              return cameraPosition == .front ? .bottomLeft : .topLeft
          case .portraitUpsideDown:
              return cameraPosition == .front ? .rightBottom : .leftBottom
          case .landscapeRight:
              return cameraPosition == .front ? .topRight : .bottomRight
          case .faceDown, .faceUp, .unknown:
              return .leftTop
          }
      }

      Objective-C

      - (FIRVisionDetectorImageOrientation)
          imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation
                                 cameraPosition:(AVCaptureDevicePosition)cameraPosition {
        switch (deviceOrientation) {
          case UIDeviceOrientationPortrait:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationLeftTop;
            } else {
              return FIRVisionDetectorImageOrientationRightTop;
            }
          case UIDeviceOrientationLandscapeLeft:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationBottomLeft;
            } else {
              return FIRVisionDetectorImageOrientationTopLeft;
            }
          case UIDeviceOrientationPortraitUpsideDown:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationRightBottom;
            } else {
              return FIRVisionDetectorImageOrientationLeftBottom;
            }
          case UIDeviceOrientationLandscapeRight:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationTopRight;
            } else {
              return FIRVisionDetectorImageOrientationBottomRight;
            }
          default:
            return FIRVisionDetectorImageOrientationTopLeft;
        }
      }

      Następnie utwórz obiekt metadanych:

      Swift

      let cameraPosition = AVCaptureDevice.Position.back  // Set to the capture device you used.
      let metadata = VisionImageMetadata()
      metadata.orientation = imageOrientation(
          deviceOrientation: UIDevice.current.orientation,
          cameraPosition: cameraPosition
      )

      Objective-C

      FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init];
      AVCaptureDevicePosition cameraPosition =
          AVCaptureDevicePositionBack;  // Set to the capture device you used.
      metadata.orientation =
          [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation
                                       cameraPosition:cameraPosition];
    2. Utwórz obiekt VisionImage za pomocą Obiekt CMSampleBufferRef i metadane rotacji:

      Swift

      let image = VisionImage(buffer: sampleBuffer)
      image.metadata = metadata

      Objective-C

      FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:sampleBuffer];
      image.metadata = metadata;
  3. Następnie przekaż obraz do metody detect(in:):

    Swift

    faceDetector.process(visionImage) { faces, error in
      guard error == nil, let faces = faces, !faces.isEmpty else {
        // ...
        return
      }
    
      // Faces detected
      // ...
    }

    Objective-C

    [faceDetector detectInImage:image
                     completion:^(NSArray<FIRVisionFace *> *faces,
                                  NSError *error) {
      if (error != nil) {
        return;
      } else if (faces != nil) {
        // Recognized faces
      }
    }];

3. Uzyskiwanie informacji o wykrytych twarzy

Jeśli operacja wykrywania twarzy się powiedzie, czujnik twarzy przekaże tablicę z VisionFace obiektów do modułu obsługi uzupełniania. Każdy VisionFace obiekt reprezentuje twarz wykrytą na obrazie. Dla: można sprawdzić współrzędne ograniczające na obrazie wejściowym, wszelkie inne informacje skonfigurowane przez Ciebie w celu wykrywania twarzy. Przykład:

Swift

for face in faces {
  let frame = face.frame
  if face.hasHeadEulerAngleY {
    let rotY = face.headEulerAngleY  // Head is rotated to the right rotY degrees
  }
  if face.hasHeadEulerAngleZ {
    let rotZ = face.headEulerAngleZ  // Head is rotated upward rotZ degrees
  }

  // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
  // nose available):
  if let leftEye = face.landmark(ofType: .leftEye) {
    let leftEyePosition = leftEye.position
  }

  // If contour detection was enabled:
  if let leftEyeContour = face.contour(ofType: .leftEye) {
    let leftEyePoints = leftEyeContour.points
  }
  if let upperLipBottomContour = face.contour(ofType: .upperLipBottom) {
    let upperLipBottomPoints = upperLipBottomContour.points
  }

  // If classification was enabled:
  if face.hasSmilingProbability {
    let smileProb = face.smilingProbability
  }
  if face.hasRightEyeOpenProbability {
    let rightEyeOpenProb = face.rightEyeOpenProbability
  }

  // If face tracking was enabled:
  if face.hasTrackingID {
    let trackingId = face.trackingID
  }
}

Objective-C

for (FIRVisionFace *face in faces) {
  // Boundaries of face in image
  CGRect frame = face.frame;

  if (face.hasHeadEulerAngleY) {
    CGFloat rotY = face.headEulerAngleY;  // Head is rotated to the right rotY degrees
  }
  if (face.hasHeadEulerAngleZ) {
    CGFloat rotZ = face.headEulerAngleZ;  // Head is tilted sideways rotZ degrees
  }

  // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
  // nose available):
  FIRVisionFaceLandmark *leftEar = [face landmarkOfType:FIRFaceLandmarkTypeLeftEar];
  if (leftEar != nil) {
    FIRVisionPoint *leftEarPosition = leftEar.position;
  }

  // If contour detection was enabled:
  FIRVisionFaceContour *upperLipBottomContour = [face contourOfType:FIRFaceContourTypeUpperLipBottom];
  if (upperLipBottomContour != nil) {
    NSArray<FIRVisionPoint *> *upperLipBottomPoints = upperLipBottomContour.points;
    if (upperLipBottomPoints.count > 0) {
      NSLog("Detected the bottom contour of the subject's upper lip.")
    }
  }

  // If classification was enabled:
  if (face.hasSmilingProbability) {
    CGFloat smileProb = face.smilingProbability;
  }
  if (face.hasRightEyeOpenProbability) {
    CGFloat rightEyeOpenProb = face.rightEyeOpenProbability;
  }

  // If face tracking was enabled:
  if (face.hasTrackingID) {
    NSInteger trackingID = face.trackingID;
  }
}

Przykład konturu twarzy

Gdy włączysz wykrywanie konturu twarzy, zobaczysz listę punktów za wszystkie wykryte cechy twarzy. Te punkty odpowiadają kształtowi funkcji. Zobacz twarz Omówienie pojęć związanych z wykrywaniem, aby uzyskać szczegółowe informacje o konturach reprezentowanych.

Na poniższym obrazie przedstawiono mapowanie tych punktów na twarz (kliknij obraz do powiększenia):

Wykrywanie twarzy w czasie rzeczywistym

Jeśli chcesz używać wykrywania twarzy w aplikacjach działających w czasie rzeczywistym, postępuj zgodnie z tymi instrukcjami wytycznych dotyczących uzyskiwania najlepszej liczby klatek na sekundę:

  • Skonfiguruj wykrywacz twarzy, aby używał jednej wykrywanie kontur lub klasyfikacja twarzy i wykrywanie punktów orientacyjnych, ale nie oba te rodzaje naraz:

    Wykrywanie konturów
    Wykrywanie punktów orientacyjnych
    Klasyfikacja
    Wykrywanie i klasyfikacja punktów orientacyjnych
    Wykrywanie konturów i wykrywanie punktów orientacyjnych
    Wykrywanie i klasyfikacja kontur
    Wykrywanie konturów, wykrywanie punktów orientacyjnych i klasyfikacja

  • Włącz tryb fast (domyślnie włączony).

  • Rozważ robienie zdjęć w niższej rozdzielczości. Pamiętaj jednak, wymagania dotyczące wymiarów obrazów w tym interfejsie API.

  • Ogranicz wywołania do detektora. Jeśli nowa klatka wideo dostępnych, gdy detektor jest uruchomiony, upuść ramkę.
  • Jeśli używasz danych wyjściowych detektora do nakładania grafiki na obrazu wejściowego, najpierw pobierz wynik z ML Kit, a następnie wyrenderuj obraz i nakładanie nakładek w jednym kroku. W ten sposób renderowanie na powierzchni tylko raz na każdą ramkę wejściową. Zobacz previewOverlayView. i FIRDetectionOverlayView w aplikacji z funkcją prezentacji.