Detecte rostos com kit de ML no iOS

Você pode usar o ML Kit para detectar rostos em imagens e vídeos.

Antes de você começar

  1. Se você ainda não adicionou o Firebase ao seu aplicativo, faça isso seguindo as etapas do guia de primeiros passos .
  2. Inclua as bibliotecas do ML Kit em seu Podfile:
    pod 'Firebase/MLVision', '6.25.0'
    # If you want to detect face contours (landmark detection and classification
    # don't require this additional model):
    pod 'Firebase/MLVisionFaceModel', '6.25.0'
    
    Depois de instalar ou atualizar os pods do seu projeto, certifique-se de abrir seu projeto Xcode usando seu .xcworkspace .
  3. No seu aplicativo, importe o Firebase:

    Rápido

    import Firebase

    Objetivo-C

    @import Firebase;

Diretrizes de imagem de entrada

Para que o ML Kit detecte rostos com precisão, as imagens de entrada devem conter rostos representados por dados de pixel suficientes. Em geral, cada rosto que você deseja detectar em uma imagem deve ter pelo menos 100x100 pixels. Se você deseja detectar os contornos dos rostos, o ML Kit requer entrada de resolução mais alta: cada rosto deve ter pelo menos 200x200 pixels.

Se você estiver detectando rostos em um aplicativo em tempo real, também poderá considerar as dimensões gerais das imagens de entrada. Imagens menores podem ser processadas mais rapidamente, portanto, para reduzir a latência, capture imagens em resoluções mais baixas (tendo em mente os requisitos de precisão acima) e garanta que o rosto do sujeito ocupe o máximo possível da imagem. Consulte também Dicas para melhorar o desempenho em tempo real .

O foco inadequado da imagem pode prejudicar a precisão. Se você não estiver obtendo resultados aceitáveis, tente pedir ao usuário para recapturar a imagem.

A orientação de um rosto em relação à câmera também pode afetar quais características faciais o ML Kit detecta. Consulte Conceitos de detecção de rosto .

1. Configure o detector facial

Antes de aplicar a detecção facial a uma imagem, se desejar alterar qualquer uma das configurações padrão do detector facial, especifique essas configurações com um objeto VisionFaceDetectorOptions . Você pode alterar as seguintes configurações:

Configurações
performanceMode fast (padrão) | accurate

Favoreça a velocidade ou a precisão ao detectar rostos.

landmarkMode none (padrão) | all

Seja para tentar detectar os "pontos de referência" faciais — olhos, orelhas, nariz, bochechas, boca — de todos os rostos detectados.

contourMode none (padrão) | all

Seja para detectar os contornos das características faciais. Os contornos são detectados apenas para o rosto mais proeminente de uma imagem.

classificationMode none (padrão) | all

Classificar ou não os rostos em categorias como "sorrindo" e "olhos abertos".

minFaceSize CGFloat (padrão: 0.1 )

O tamanho mínimo, relativo à imagem, dos rostos a serem detectados.

isTrackingEnabled false (padrão) | true

Se deve ou não atribuir um ID aos rostos, que pode ser usado para rastrear rostos nas imagens.

Observe que quando a detecção de contorno está habilitada, apenas um rosto é detectado, portanto o rastreamento de rosto não produz resultados úteis. Por esse motivo, e para melhorar a velocidade de detecção, não ative a detecção de contorno e o rastreamento facial.

Por exemplo, crie um objeto VisionFaceDetectorOptions como um dos exemplos a seguir:

Rápido

// High-accuracy landmark detection and face classification
let options = VisionFaceDetectorOptions()
options.performanceMode = .accurate
options.landmarkMode = .all
options.classificationMode = .all

// Real-time contour detection of multiple faces
let options = VisionFaceDetectorOptions()
options.contourMode = .all

Objetivo-C

// High-accuracy landmark detection and face classification
FIRVisionFaceDetectorOptions *options = [[FIRVisionFaceDetectorOptions alloc] init];
options.performanceMode = FIRVisionFaceDetectorPerformanceModeAccurate;
options.landmarkMode = FIRVisionFaceDetectorLandmarkModeAll;
options.classificationMode = FIRVisionFaceDetectorClassificationModeAll;

// Real-time contour detection of multiple faces
FIRVisionFaceDetectorOptions *options = [[FIRVisionFaceDetectorOptions alloc] init];
options.contourMode = FIRVisionFaceDetectorContourModeAll;

2. Execute o detector facial

Para detectar rostos em uma imagem, passe a imagem como UIImage ou CMSampleBufferRef para o método detect(in:) do VisionFaceDetector :

  1. Obtenha uma instância do VisionFaceDetector :

    Rápido

    lazy var vision = Vision.vision()
    
    let faceDetector = vision.faceDetector(options: options)
    

    Objetivo-C

    FIRVision *vision = [FIRVision vision];
    FIRVisionFaceDetector *faceDetector = [vision faceDetector];
    // Or, to change the default settings:
    // FIRVisionFaceDetector *faceDetector =
    //     [vision faceDetectorWithOptions:options];
    
  2. Crie um objeto VisionImage usando UIImage ou CMSampleBufferRef .

    Para usar uma UIImage :

    1. Se necessário, gire a imagem para que sua propriedade imageOrientation seja .up .
    2. Crie um objeto VisionImage usando o UIImage girado corretamente. Não especifique nenhum metadado de rotação — o valor padrão, .topLeft , deve ser usado.

      Rápido

      let image = VisionImage(image: uiImage)

      Objetivo-C

      FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];

    Para usar um CMSampleBufferRef :

    1. Crie um objeto VisionImageMetadata que especifique a orientação dos dados de imagem contidos no buffer CMSampleBufferRef .

      Para obter a orientação da imagem:

      Rápido

      func imageOrientation(
          deviceOrientation: UIDeviceOrientation,
          cameraPosition: AVCaptureDevice.Position
          ) -> VisionDetectorImageOrientation {
          switch deviceOrientation {
          case .portrait:
              return cameraPosition == .front ? .leftTop : .rightTop
          case .landscapeLeft:
              return cameraPosition == .front ? .bottomLeft : .topLeft
          case .portraitUpsideDown:
              return cameraPosition == .front ? .rightBottom : .leftBottom
          case .landscapeRight:
              return cameraPosition == .front ? .topRight : .bottomRight
          case .faceDown, .faceUp, .unknown:
              return .leftTop
          }
      }

      Objetivo-C

      - (FIRVisionDetectorImageOrientation)
          imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation
                                 cameraPosition:(AVCaptureDevicePosition)cameraPosition {
        switch (deviceOrientation) {
          case UIDeviceOrientationPortrait:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationLeftTop;
            } else {
              return FIRVisionDetectorImageOrientationRightTop;
            }
          case UIDeviceOrientationLandscapeLeft:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationBottomLeft;
            } else {
              return FIRVisionDetectorImageOrientationTopLeft;
            }
          case UIDeviceOrientationPortraitUpsideDown:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationRightBottom;
            } else {
              return FIRVisionDetectorImageOrientationLeftBottom;
            }
          case UIDeviceOrientationLandscapeRight:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationTopRight;
            } else {
              return FIRVisionDetectorImageOrientationBottomRight;
            }
          default:
            return FIRVisionDetectorImageOrientationTopLeft;
        }
      }

      Em seguida, crie o objeto de metadados:

      Rápido

      let cameraPosition = AVCaptureDevice.Position.back  // Set to the capture device you used.
      let metadata = VisionImageMetadata()
      metadata.orientation = imageOrientation(
          deviceOrientation: UIDevice.current.orientation,
          cameraPosition: cameraPosition
      )

      Objetivo-C

      FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init];
      AVCaptureDevicePosition cameraPosition =
          AVCaptureDevicePositionBack;  // Set to the capture device you used.
      metadata.orientation =
          [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation
                                       cameraPosition:cameraPosition];
    2. Crie um objeto VisionImage usando o objeto CMSampleBufferRef e os metadados de rotação:

      Rápido

      let image = VisionImage(buffer: sampleBuffer)
      image.metadata = metadata

      Objetivo-C

      FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:sampleBuffer];
      image.metadata = metadata;
  3. Em seguida, passe a imagem para o método detect(in:) :

    Rápido

    faceDetector.process(visionImage) { faces, error in
      guard error == nil, let faces = faces, !faces.isEmpty else {
        // ...
        return
      }
    
      // Faces detected
      // ...
    }
    

    Objetivo-C

    [faceDetector detectInImage:image
                     completion:^(NSArray<FIRVisionFace *> *faces,
                                  NSError *error) {
      if (error != nil) {
        return;
      } else if (faces != nil) {
        // Recognized faces
      }
    }];
    

3. Obtenha informações sobre rostos detectados

Se a operação de detecção facial for bem-sucedida, o detector facial passará uma matriz de objetos VisionFace para o manipulador de conclusão. Cada objeto VisionFace representa um rosto que foi detectado na imagem. Para cada rosto, você pode obter suas coordenadas delimitadoras na imagem de entrada, bem como qualquer outra informação que você configurou para o detector de rosto encontrar. Por exemplo:

Rápido

for face in faces {
  let frame = face.frame
  if face.hasHeadEulerAngleY {
    let rotY = face.headEulerAngleY  // Head is rotated to the right rotY degrees
  }
  if face.hasHeadEulerAngleZ {
    let rotZ = face.headEulerAngleZ  // Head is rotated upward rotZ degrees
  }

  // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
  // nose available):
  if let leftEye = face.landmark(ofType: .leftEye) {
    let leftEyePosition = leftEye.position
  }

  // If contour detection was enabled:
  if let leftEyeContour = face.contour(ofType: .leftEye) {
    let leftEyePoints = leftEyeContour.points
  }
  if let upperLipBottomContour = face.contour(ofType: .upperLipBottom) {
    let upperLipBottomPoints = upperLipBottomContour.points
  }

  // If classification was enabled:
  if face.hasSmilingProbability {
    let smileProb = face.smilingProbability
  }
  if face.hasRightEyeOpenProbability {
    let rightEyeOpenProb = face.rightEyeOpenProbability
  }

  // If face tracking was enabled:
  if face.hasTrackingID {
    let trackingId = face.trackingID
  }
}

Objetivo-C

for (FIRVisionFace *face in faces) {
  // Boundaries of face in image
  CGRect frame = face.frame;

  if (face.hasHeadEulerAngleY) {
    CGFloat rotY = face.headEulerAngleY;  // Head is rotated to the right rotY degrees
  }
  if (face.hasHeadEulerAngleZ) {
    CGFloat rotZ = face.headEulerAngleZ;  // Head is tilted sideways rotZ degrees
  }

  // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
  // nose available):
  FIRVisionFaceLandmark *leftEar = [face landmarkOfType:FIRFaceLandmarkTypeLeftEar];
  if (leftEar != nil) {
    FIRVisionPoint *leftEarPosition = leftEar.position;
  }

  // If contour detection was enabled:
  FIRVisionFaceContour *upperLipBottomContour = [face contourOfType:FIRFaceContourTypeUpperLipBottom];
  if (upperLipBottomContour != nil) {
    NSArray<FIRVisionPoint *> *upperLipBottomPoints = upperLipBottomContour.points;
    if (upperLipBottomPoints.count > 0) {
      NSLog("Detected the bottom contour of the subject's upper lip.")
    }
  }

  // If classification was enabled:
  if (face.hasSmilingProbability) {
    CGFloat smileProb = face.smilingProbability;
  }
  if (face.hasRightEyeOpenProbability) {
    CGFloat rightEyeOpenProb = face.rightEyeOpenProbability;
  }

  // If face tracking was enabled:
  if (face.hasTrackingID) {
    NSInteger trackingID = face.trackingID;
  }
}

Exemplo de contornos faciais

Quando a detecção de contorno facial está ativada, você obtém uma lista de pontos para cada característica facial detectada. Esses pontos representam a forma do recurso. Consulte Visão geral dos conceitos de detecção de rosto para obter detalhes sobre como os contornos são representados.

A imagem a seguir ilustra como esses pontos são mapeados para uma face (clique na imagem para ampliar):

Detecção facial em tempo real

Se você quiser usar a detecção facial em um aplicativo em tempo real, siga estas diretrizes para obter as melhores taxas de quadros:

  • Configure o detector facial para usar detecção de contorno facial ou classificação e detecção de pontos de referência, mas não ambos:

    Detecção de contorno
    Detecção de pontos de referência
    Classificação
    Detecção e classificação de pontos de referência
    Detecção de contorno e detecção de pontos de referência
    Detecção e classificação de contorno
    Detecção de contorno, detecção de pontos de referência e classificação

  • Ative o modo fast (ativado por padrão).

  • Considere capturar imagens com uma resolução mais baixa. No entanto, lembre-se também dos requisitos de dimensão de imagem desta API.

  • Limite as chamadas para o detector. Se um novo quadro de vídeo ficar disponível enquanto o detector estiver em execução, elimine o quadro.
  • Se você estiver usando a saída do detector para sobrepor gráficos na imagem de entrada, primeiro obtenha o resultado do Kit de ML e, em seguida, renderize a imagem e a sobreposição em uma única etapa. Ao fazer isso, você renderiza na superfície de exibição apenas uma vez para cada quadro de entrada. Veja as classes previewOverlayView e FIRDetectionOverlayView no aplicativo de exemplo de demonstração para ver um exemplo.