Bạn có thể dùng Bộ công cụ học máy để phát hiện các khuôn mặt trong hình ảnh và video.
Trước khi bắt đầu
- Nếu bạn chưa thêm Firebase vào ứng dụng của mình, hãy thực hiện bằng cách làm theo hướng dẫn các bước trong hướng dẫn bắt đầu sử dụng.
- Thêm các thư viện Bộ công cụ học máy vào Podfile của bạn:
Sau khi cài đặt hoặc cập nhật Nhóm của dự án, hãy nhớ mở Xcode dự án bằngpod 'Firebase/MLVision', '6.25.0' # If you want to detect face contours (landmark detection and classification # don't require this additional model): pod 'Firebase/MLVisionFaceModel', '6.25.0'
.xcworkspace
của nó. - Trong ứng dụng của bạn, hãy nhập Firebase:
Swift
import Firebase
Objective-C
@import Firebase;
Nguyên tắc nhập hình ảnh
Để Bộ công cụ học máy phát hiện chính xác khuôn mặt, hình ảnh đầu vào phải chứa khuôn mặt được biểu thị bằng đủ dữ liệu pixel. Nhìn chung, mỗi khuôn mặt bạn muốn để phát hiện trong hình ảnh phải có kích thước tối thiểu là 100x100 pixel. Nếu bạn muốn phát hiện đường viền của khuôn mặt, Bộ công cụ học máy yêu cầu dữ liệu đầu vào có độ phân giải cao hơn: mỗi khuôn mặt phải có kích thước tối thiểu là 200x200 pixel.
Nếu đang phát hiện khuôn mặt trong ứng dụng theo thời gian thực, có thể bạn cũng muốn để xem xét kích thước tổng thể của các hình ảnh đầu vào. Hình ảnh nhỏ hơn có thể được xử lý nhanh hơn, vì vậy để giảm độ trễ, hãy chụp ảnh ở độ phân giải thấp hơn (lưu ý các yêu cầu nêu trên về độ chính xác) và đảm bảo rằng khuôn mặt của chủ thể chiếm nhiều diện tích hình ảnh nhất có thể. Xem thêm Mẹo cải thiện hiệu suất theo thời gian thực.
Hình ảnh lấy nét kém có thể ảnh hưởng đến độ chính xác. Nếu bạn không nhận được kết quả được chấp nhận, hãy thử yêu cầu người dùng chụp lại hình ảnh.
Hướng của khuôn mặt so với camera cũng có thể ảnh hưởng đến khuôn mặt các tính năng mà Bộ công cụ học máy phát hiện. Xem Phát hiện khuôn mặt Khái niệm.
1. Định cấu hình trình phát hiện khuôn mặt
Trước khi áp dụng tính năng phát hiện khuôn mặt cho một hình ảnh, nếu bạn muốn thay đổi bất kỳ chế độ cài đặt nào trình phát hiện khuôn mặt, hãy chỉ định các cài đặt đó bằng Đối tượngVisionFaceDetectorOptions
. Bạn có thể thay đổi
các chế độ cài đặt sau:
Cài đặt | |
---|---|
performanceMode |
fast (mặc định) | accurate
Ưu tiên tốc độ hoặc độ chính xác khi phát hiện khuôn mặt. |
landmarkMode |
none (mặc định) | all
Liệu có cố gắng phát hiện các "điểm mốc" trên khuôn mặt hay không, chẳng hạn như đôi mắt, tai, mũi, má, miệng — của tất cả các khuôn mặt được phát hiện. |
contourMode |
none (mặc định) | all
Liệu có phát hiện các đường nét của đặc điểm khuôn mặt hay không. Đường viền là chỉ phát hiện được khuôn mặt nổi bật nhất trong một hình ảnh. |
classificationMode |
none (mặc định) | all
Có phân loại khuôn mặt theo các danh mục như "cười lớn" hay không, và "mắt mở". |
minFaceSize |
CGFloat (mặc định: 0.1 )
Kích thước tối thiểu (so với hình ảnh) của các khuôn mặt cần phát hiện. |
isTrackingEnabled |
false (mặc định) | true
Liệu có gán một giấy tờ tuỳ thân cho khuôn mặt (có thể dùng để theo dõi) khuôn mặt trên các hình ảnh. Lưu ý rằng khi tính năng phát hiện đường viền được bật, chỉ một khuôn mặt được bật nên tính năng theo dõi khuôn mặt sẽ không tạo ra kết quả hữu ích. Để làm việc này và để cải thiện tốc độ phát hiện, không được bật cả hai đường đồng mức phát hiện và theo dõi khuôn mặt. |
Ví dụ: tạo một VisionFaceDetectorOptions
giống như một trong các ví dụ sau:
Swift
// High-accuracy landmark detection and face classification let options = VisionFaceDetectorOptions() options.performanceMode = .accurate options.landmarkMode = .all options.classificationMode = .all // Real-time contour detection of multiple faces let options = VisionFaceDetectorOptions() options.contourMode = .all
Objective-C
// High-accuracy landmark detection and face classification FIRVisionFaceDetectorOptions *options = [[FIRVisionFaceDetectorOptions alloc] init]; options.performanceMode = FIRVisionFaceDetectorPerformanceModeAccurate; options.landmarkMode = FIRVisionFaceDetectorLandmarkModeAll; options.classificationMode = FIRVisionFaceDetectorClassificationModeAll; // Real-time contour detection of multiple faces FIRVisionFaceDetectorOptions *options = [[FIRVisionFaceDetectorOptions alloc] init]; options.contourMode = FIRVisionFaceDetectorContourModeAll;
2. Chạy trình phát hiện khuôn mặt
Để phát hiện các khuôn mặt trong hình ảnh, hãy truyền hình ảnh đó dưới dạngUIImage
hoặc
CMSampleBufferRef
vào detect(in:)
của VisionFaceDetector
phương thức:
- Nhận một thực thể của
VisionFaceDetector
:Swift
lazy var vision = Vision.vision() let faceDetector = vision.faceDetector(options: options)
Objective-C
FIRVision *vision = [FIRVision vision]; FIRVisionFaceDetector *faceDetector = [vision faceDetector]; // Or, to change the default settings: // FIRVisionFaceDetector *faceDetector = // [vision faceDetectorWithOptions:options];
-
Tạo đối tượng
VisionImage
bằngUIImage
hoặcCMSampleBufferRef
.Cách sử dụng
UIImage
:- Nếu cần, hãy xoay hình ảnh để
imageOrientation
là.up
. - Tạo đối tượng
VisionImage
bằng chế độ xoay chính xácUIImage
Không chỉ định bất kỳ siêu dữ liệu xoay vòng nào—mặc định bạn phải sử dụng giá trị.topLeft
.Swift
let image = VisionImage(image: uiImage)
Objective-C
FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];
Cách sử dụng
CMSampleBufferRef
:-
Tạo đối tượng
VisionImageMetadata
chỉ định của dữ liệu hình ảnh chứa trong Vùng đệmCMSampleBufferRef
.Cách lấy hướng ảnh:
Swift
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> VisionDetectorImageOrientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftTop : .rightTop case .landscapeLeft: return cameraPosition == .front ? .bottomLeft : .topLeft case .portraitUpsideDown: return cameraPosition == .front ? .rightBottom : .leftBottom case .landscapeRight: return cameraPosition == .front ? .topRight : .bottomRight case .faceDown, .faceUp, .unknown: return .leftTop } }
Objective-C
- (FIRVisionDetectorImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationLeftTop; } else { return FIRVisionDetectorImageOrientationRightTop; } case UIDeviceOrientationLandscapeLeft: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationBottomLeft; } else { return FIRVisionDetectorImageOrientationTopLeft; } case UIDeviceOrientationPortraitUpsideDown: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationRightBottom; } else { return FIRVisionDetectorImageOrientationLeftBottom; } case UIDeviceOrientationLandscapeRight: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationTopRight; } else { return FIRVisionDetectorImageOrientationBottomRight; } default: return FIRVisionDetectorImageOrientationTopLeft; } }
Sau đó, hãy tạo đối tượng siêu dữ liệu:
Swift
let cameraPosition = AVCaptureDevice.Position.back // Set to the capture device you used. let metadata = VisionImageMetadata() metadata.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition )
Objective-C
FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init]; AVCaptureDevicePosition cameraPosition = AVCaptureDevicePositionBack; // Set to the capture device you used. metadata.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
- Tạo đối tượng
VisionImage
bằng Đối tượngCMSampleBufferRef
và siêu dữ liệu xoay:Swift
let image = VisionImage(buffer: sampleBuffer) image.metadata = metadata
Objective-C
FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:sampleBuffer]; image.metadata = metadata;
- Nếu cần, hãy xoay hình ảnh để
-
Sau đó, hãy truyền hình ảnh đó vào phương thức
detect(in:)
:Swift
faceDetector.process(visionImage) { faces, error in guard error == nil, let faces = faces, !faces.isEmpty else { // ... return } // Faces detected // ... }
Objective-C
[faceDetector detectInImage:image completion:^(NSArray<FIRVisionFace *> *faces, NSError *error) { if (error != nil) { return; } else if (faces != nil) { // Recognized faces } }];
3. Nhận thông tin về các khuôn mặt được phát hiện
Nếu thao tác phát hiện khuôn mặt thành công, trình phát hiện khuôn mặt sẽ truyền một mảng của đối tượngVisionFace
cho trình xử lý hoàn thành. Một
Đối tượng VisionFace
đại diện cho một khuôn mặt được phát hiện trong hình ảnh. Cho
từng khuôn mặt, bạn có thể lấy toạ độ giới hạn trong hình ảnh đầu vào, cũng như
bất kỳ thông tin nào khác mà bạn đã định cấu hình trình phát hiện khuôn mặt để tìm. Ví dụ:
Swift
for face in faces { let frame = face.frame if face.hasHeadEulerAngleY { let rotY = face.headEulerAngleY // Head is rotated to the right rotY degrees } if face.hasHeadEulerAngleZ { let rotZ = face.headEulerAngleZ // Head is rotated upward rotZ degrees } // If landmark detection was enabled (mouth, ears, eyes, cheeks, and // nose available): if let leftEye = face.landmark(ofType: .leftEye) { let leftEyePosition = leftEye.position } // If contour detection was enabled: if let leftEyeContour = face.contour(ofType: .leftEye) { let leftEyePoints = leftEyeContour.points } if let upperLipBottomContour = face.contour(ofType: .upperLipBottom) { let upperLipBottomPoints = upperLipBottomContour.points } // If classification was enabled: if face.hasSmilingProbability { let smileProb = face.smilingProbability } if face.hasRightEyeOpenProbability { let rightEyeOpenProb = face.rightEyeOpenProbability } // If face tracking was enabled: if face.hasTrackingID { let trackingId = face.trackingID } }
Objective-C
for (FIRVisionFace *face in faces) { // Boundaries of face in image CGRect frame = face.frame; if (face.hasHeadEulerAngleY) { CGFloat rotY = face.headEulerAngleY; // Head is rotated to the right rotY degrees } if (face.hasHeadEulerAngleZ) { CGFloat rotZ = face.headEulerAngleZ; // Head is tilted sideways rotZ degrees } // If landmark detection was enabled (mouth, ears, eyes, cheeks, and // nose available): FIRVisionFaceLandmark *leftEar = [face landmarkOfType:FIRFaceLandmarkTypeLeftEar]; if (leftEar != nil) { FIRVisionPoint *leftEarPosition = leftEar.position; } // If contour detection was enabled: FIRVisionFaceContour *upperLipBottomContour = [face contourOfType:FIRFaceContourTypeUpperLipBottom]; if (upperLipBottomContour != nil) { NSArray<FIRVisionPoint *> *upperLipBottomPoints = upperLipBottomContour.points; if (upperLipBottomPoints.count > 0) { NSLog("Detected the bottom contour of the subject's upper lip.") } } // If classification was enabled: if (face.hasSmilingProbability) { CGFloat smileProb = face.smilingProbability; } if (face.hasRightEyeOpenProbability) { CGFloat rightEyeOpenProb = face.rightEyeOpenProbability; } // If face tracking was enabled: if (face.hasTrackingID) { NSInteger trackingID = face.trackingID; } }
Ví dụ về đường viền khuôn mặt
Khi bật tính năng phát hiện đường viền khuôn mặt, bạn sẽ nhận được danh sách các điểm cho từng đặc điểm khuôn mặt phát hiện được. Những điểm này biểu thị hình dạng của của chúng tôi. Xem Khuôn mặt Tổng quan về khái niệm phát hiện để biết thông tin chi tiết về cách đường bao đại diện.
Hình ảnh sau đây minh hoạ cách các điểm này ánh xạ với một khuôn mặt (nhấp vào hình ảnh để phóng to):
Phát hiện khuôn mặt theo thời gian thực
Nếu bạn muốn dùng tính năng phát hiện khuôn mặt trong ứng dụng theo thời gian thực, hãy làm theo các bước sau để đạt được tốc độ khung hình tốt nhất:
Định cấu hình trình phát hiện khuôn mặt để sử dụng phát hiện hoặc phân loại đường viền khuôn mặt cũng như phát hiện mốc, nhưng không được thực hiện cả hai:
Phát hiện đường viền
Phát hiện địa danh
Phân loại
Phát hiện và phân loại địa danh
Phát hiện đường viền và phát hiện điểm mốc
Phát hiện và phân loại đường viền
Phát hiện đường viền, phát hiện và phân loại điểm mốcBật chế độ
fast
(bật theo mặc định).Hãy cân nhắc chụp ảnh ở độ phân giải thấp hơn. Tuy nhiên, hãy lưu ý rằng các yêu cầu về kích thước hình ảnh của API này.
- Điều tiết lệnh gọi đến trình phát hiện. Nếu một khung video mới trong khi trình phát hiện đang chạy, hãy thả khung hình.
- Nếu bạn đang sử dụng đầu ra của trình phát hiện để phủ đồ hoạ lên hình ảnh đầu vào, trước tiên hãy lấy kết quả từ Bộ công cụ học máy, sau đó kết xuất hình ảnh và phủ lên trên trong một bước duy nhất. Khi làm vậy, bạn sẽ kết xuất lên giao diện màn hình một lần cho mỗi khung đầu vào. Xem previewOverlayView và FIRDetectionOverlayView trong ứng dụng mẫu Showcase.