זיהוי טקסט בתמונות באמצעות ערכת למידת מכונה ב-Android

אפשר להשתמש ב-ML Kit כדי לזהות טקסט בתמונות. ‫ML Kit כולל גם API לשימוש כללי שמתאים לזיהוי טקסט בתמונות, כמו טקסט של תמרור, וגם API שעבר אופטימיזציה לזיהוי טקסט במסמכים. ל-API לשימוש כללי יש מודלים במכשיר ומודלים מבוססי-ענן. זיהוי טקסט במסמך זמין רק כמודל מבוסס-ענן. בסקירה הכללית מופיעה השוואה בין המודלים בענן ובמכשיר.

לפני שמתחילים

  1. אם עדיין לא עשיתם זאת, אתם צריכים להוסיף את Firebase לפרויקט Android.
  2. מוסיפים את התלויות של ספריות ML Kit Android לקובץ Gradle של המודול (ברמת האפליקציה) (בדרך כלל app/build.gradle):
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
    }
  3. אופציונלי, אבל מומלץ: אם משתמשים ב-API במכשיר, צריך להגדיר את האפליקציה כך שתוריד באופן אוטומטי את מודל ה-ML למכשיר אחרי שהאפליקציה מותקנת מחנות Play.

    כדי לעשות זאת, מוסיפים את ההצהרה הבאה לקובץ AndroidManifest.xml של האפליקציה:

    <application ...>
      ...
      <meta-data
          android:name="com.google.firebase.ml.vision.DEPENDENCIES"
          android:value="ocr" />
      <!-- To use multiple models: android:value="ocr,model2,model3" -->
    </application>
    אם לא מפעילים הורדות של מודלים בזמן ההתקנה, המודל יורד בפעם הראשונה שמריצים את הכלי לזיהוי במכשיר. בקשות שתשלחו לפני שההורדה תסתיים לא יניבו תוצאות.
  4. אם אתם רוצים להשתמש במודל מבוסס-Cloud, ולא הפעלתם עדיין את ממשקי ה-API מבוססי-Cloud בפרויקט שלכם, עכשיו זה הזמן:

    1. פותחים את הדף ML Kit APIs במסוף Firebase.
    2. אם עדיין לא שדרגתם את הפרויקט לתוכנית התמחור Blaze, לוחצים על שדרוג כדי לעשות זאת. (ההודעה על הצורך בשדרוג תוצג רק אם הפרויקט לא מוגדר בתוכנית Blaze).

      רק בפרויקטים ברמת Blaze אפשר להשתמש בממשקי API מבוססי-Cloud.

    3. אם ממשקי API מבוססי-ענן לא מופעלים כבר, לוחצים על Enable Cloud-based APIs.

    אם רוצים להשתמש רק במודל במכשיר, אפשר לדלג על השלב הזה.

עכשיו אפשר להתחיל לזהות טקסט בתמונות.

הנחיות לגבי תמונות קלט

  • כדי ש-ML Kit יזהה טקסט בצורה מדויקת, התמונות שמוזנות לו צריכות להכיל טקסט שמיוצג על ידי נתוני פיקסלים מספיקים. באופן אידיאלי, עבור טקסט לטיני, כל תו צריך להיות בגודל 16x16 פיקסלים לפחות. בטקסט בסינית, ביפנית ובקוריאנית (שנתמך רק על ידי ממשקי ה-API מבוססי-הענן), כל תו צריך להיות בגודל 24x24 פיקסלים. בכל השפות, בדרך כלל אין יתרון בדיוק אם התווים גדולים מ-24x24 פיקסלים.

    לדוגמה, תמונה בגודל ‎640x480 יכולה להתאים לסריקה של כרטיס ביקור שממלא את כל הרוחב של התמונה. כדי לסרוק מסמך שמודפס על נייר בגודל Letter, יכול להיות שתידרש תמונה בגודל 720x1280 פיקסלים.

  • פוקוס לא טוב של התמונה עלול לפגוע בדיוק של זיהוי הטקסט. אם התוצאות לא מספיק טובות, אפשר לבקש מהמשתמש לצלם מחדש את התמונה.

  • אם אתם מזהים טקסט באפליקציה בזמן אמת, כדאי גם לקחת בחשבון את הממדים הכוללים של תמונות הקלט. אפשר לעבד תמונות קטנות יותר מהר יותר, ולכן כדי לצמצם את זמן האחזור, כדאי לצלם תמונות ברזולוציות נמוכות יותר (תוך הקפדה על דרישות הדיוק שצוינו למעלה) ולוודא שהטקסט תופס כמה שיותר מהתמונה. כדאי לעיין גם בטיפים לשיפור הביצועים בזמן אמת.


זיהוי טקסט בתמונות

כדי לזהות טקסט בתמונה באמצעות מודל מבוסס-ענן או מודל שפועל במכשיר, מפעילים את הכלי לזיהוי טקסט כמו שמתואר בהמשך.

1. הפעלת הכלי לזיהוי טקסט

כדי לזהות טקסט בתמונה, יוצרים אובייקט FirebaseVisionImage מ-Bitmap,‏ media.Image,‏ ByteBuffer, מערך בייטים או קובץ במכשיר. לאחר מכן, מעבירים את האובייקט FirebaseVisionImage לשיטה processImage של FirebaseVisionTextRecognizer.

  1. יוצרים אובייקט FirebaseVisionImage מהתמונה.

    • כדי ליצור אובייקט FirebaseVisionImage מאובייקט media.Image, למשל כשמצלמים תמונה ממצלמת המכשיר, מעבירים את אובייקט media.Image ואת הסיבוב של התמונה אל FirebaseVisionImage.fromMediaImage().

      אם משתמשים בספריית CameraX, המחלקות OnImageCapturedListener ו-ImageAnalysis.Analyzer מחשבות את ערך הסיבוב בשבילכם, כך שאתם רק צריכים להמיר את הסיבוב לאחת מהקבועים של ML Kit‏ ROTATION_ לפני שקוראים ל-FirebaseVisionImage.fromMediaImage():

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }

      Kotlin

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }

      אם לא משתמשים בספריית מצלמה שמספקת את סיבוב התמונה, אפשר לחשב את הסיבוב מסיבוב המכשיר ומכיוון חיישן המצלמה במכשיר:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      לאחר מכן מעבירים את האובייקט media.Image ואת ערך הסיבוב אל FirebaseVisionImage.fromMediaImage():

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • כדי ליצור אובייקט FirebaseVisionImage מ-URI של קובץ, מעבירים את הקשר של האפליקציה ואת ה-URI של הקובץ אל FirebaseVisionImage.fromFilePath(). האפשרות הזו שימושית כשמשתמשים ב-ACTION_GET_CONTENT intent כדי להנחות את המשתמש לבחור תמונה מאפליקציית הגלריה שלו.

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • כדי ליצור אובייקט FirebaseVisionImage מ-ByteBuffer או ממערך בייטים, קודם מחשבים את סיבוב התמונה כמו שמתואר למעלה לגבי קלט media.Image.

      לאחר מכן, יוצרים אובייקט FirebaseVisionImageMetadata שמכיל את הגובה, הרוחב, פורמט קידוד הצבע והסיבוב של התמונה:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      משתמשים במאגר או במערך ובאובייקט המטא-נתונים כדי ליצור אובייקט FirebaseVisionImage:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • כדי ליצור אובייקט FirebaseVisionImage מאובייקט Bitmap:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      התמונה שמיוצגת על ידי אובייקט Bitmap צריכה להיות זקופה, בלי שיהיה צורך בסיבוב נוסף.

  2. קבלת מופע של FirebaseVisionTextRecognizer.

    כדי להשתמש במודל במכשיר:

    Java

    FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
            .getOnDeviceTextRecognizer();

    Kotlin

    val detector = FirebaseVision.getInstance()
            .onDeviceTextRecognizer

    כדי להשתמש במודל מבוסס-הענן:

    Java

    FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudTextRecognizer();
    // Or, to change the default settings:
    //   FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
    //          .getCloudTextRecognizer(options);
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FirebaseVisionCloudTextRecognizerOptions options = new FirebaseVisionCloudTextRecognizerOptions.Builder()
            .setLanguageHints(Arrays.asList("en", "hi"))
            .build();

    Kotlin

    val detector = FirebaseVision.getInstance().cloudTextRecognizer
    // Or, to change the default settings:
    // val detector = FirebaseVision.getInstance().getCloudTextRecognizer(options)
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    val options = FirebaseVisionCloudTextRecognizerOptions.Builder()
            .setLanguageHints(listOf("en", "hi"))
            .build()
  3. לבסוף, מעבירים את התמונה לשיטה processImage:

    Java

    Task<FirebaseVisionText> result =
            detector.processImage(image)
                    .addOnSuccessListener(new OnSuccessListener<FirebaseVisionText>() {
                        @Override
                        public void onSuccess(FirebaseVisionText firebaseVisionText) {
                            // Task completed successfully
                            // ...
                        }
                    })
                    .addOnFailureListener(
                            new OnFailureListener() {
                                @Override
                                public void onFailure(@NonNull Exception e) {
                                    // Task failed with an exception
                                    // ...
                                }
                            });

    Kotlin

    val result = detector.processImage(image)
            .addOnSuccessListener { firebaseVisionText ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener { e ->
                // Task failed with an exception
                // ...
            }

2. חילוץ טקסט מבלוקים של טקסט מזוהה

אם פעולת זיהוי הטקסט תצליח, אובייקט FirebaseVisionText יועבר למאזין ההצלחה. אובייקט FirebaseVisionText מכיל את הטקסט המלא שזוהה בתמונה ואפס או יותר אובייקטים מסוג TextBlock.

כל TextBlock מייצג בלוק טקסט מלבני, שמכיל אפס או יותר אובייקטים מסוג Line. כל אובייקט Line מכיל אפס אובייקטים מסוג Element או יותר, שמייצגים מילים וישויות דמויות מילים (תאריכים, מספרים וכו').

לכל אובייקט TextBlock, Line ו-Element, אפשר לקבל את הטקסט שזוהה באזור ואת קואורדינטות התיחום של האזור.

לדוגמה:

Java

String resultText = result.getText();
for (FirebaseVisionText.TextBlock block: result.getTextBlocks()) {
    String blockText = block.getText();
    Float blockConfidence = block.getConfidence();
    List<RecognizedLanguage> blockLanguages = block.getRecognizedLanguages();
    Point[] blockCornerPoints = block.getCornerPoints();
    Rect blockFrame = block.getBoundingBox();
    for (FirebaseVisionText.Line line: block.getLines()) {
        String lineText = line.getText();
        Float lineConfidence = line.getConfidence();
        List<RecognizedLanguage> lineLanguages = line.getRecognizedLanguages();
        Point[] lineCornerPoints = line.getCornerPoints();
        Rect lineFrame = line.getBoundingBox();
        for (FirebaseVisionText.Element element: line.getElements()) {
            String elementText = element.getText();
            Float elementConfidence = element.getConfidence();
            List<RecognizedLanguage> elementLanguages = element.getRecognizedLanguages();
            Point[] elementCornerPoints = element.getCornerPoints();
            Rect elementFrame = element.getBoundingBox();
        }
    }
}

Kotlin

val resultText = result.text
for (block in result.textBlocks) {
    val blockText = block.text
    val blockConfidence = block.confidence
    val blockLanguages = block.recognizedLanguages
    val blockCornerPoints = block.cornerPoints
    val blockFrame = block.boundingBox
    for (line in block.lines) {
        val lineText = line.text
        val lineConfidence = line.confidence
        val lineLanguages = line.recognizedLanguages
        val lineCornerPoints = line.cornerPoints
        val lineFrame = line.boundingBox
        for (element in line.elements) {
            val elementText = element.text
            val elementConfidence = element.confidence
            val elementLanguages = element.recognizedLanguages
            val elementCornerPoints = element.cornerPoints
            val elementFrame = element.boundingBox
        }
    }
}

טיפים לשיפור הביצועים בזמן אמת

אם רוצים להשתמש במודל במכשיר כדי לזהות טקסט באפליקציה בזמן אמת, כדאי לפעול לפי ההנחיות האלה כדי להשיג את קצב הפריימים הטוב ביותר:

  • הגבלת מספר השיחות לזיהוי הטקסט. אם פריים חדש של סרטון הופך לזמין בזמן שרכיב זיהוי הטקסט פועל, צריך להשליך את הפריים.
  • אם אתם משתמשים בפלט של הכלי לזיהוי טקסט כדי להוסיף גרפיקה לתמונת הקלט, קודם צריך לקבל את התוצאה מ-ML Kit, ואז לעבד את התמונה ולהוסיף את הגרפיקה בשלב אחד. כך, הרינדור מתבצע רק פעם אחת לכל מסגרת קלט.
  • אם אתם משתמשים ב-Camera2 API, צלמו תמונות בפורמט ImageFormat.YUV_420_888.

    אם משתמשים בגרסה ישנה יותר של Camera API, צריך לצלם תמונות בפורמט ImageFormat.NV21.

  • כדאי לצלם תמונות ברזולוציה נמוכה יותר. עם זאת, חשוב לזכור גם את הדרישות לגבי מידות התמונה ב-API הזה.

השלבים הבאים


זיהוי טקסט בתמונות של מסמכים

כדי לזהות את הטקסט במסמך, צריך להגדיר ולהפעיל את הכלי לזיהוי טקסט במסמכים שמבוסס על ענן, כמו שמתואר בהמשך.

ממשק ה-API לזיהוי טקסט במסמכים, שמתואר בהמשך, נועד להקל על העבודה עם תמונות של מסמכים. עם זאת, אם אתם מעדיפים את הממשק שמסופק על ידי FirebaseVisionTextRecognizer API, אתם יכולים להשתמש בו במקום זאת כדי לסרוק מסמכים. לשם כך, צריך להגדיר את הכלי לזיהוי טקסט בענן לשימוש במודל טקסט צפוף.

כדי להשתמש ב-API לזיהוי טקסט במסמך:

1. הפעלת הכלי לזיהוי טקסט

כדי לזהות טקסט בתמונה, יוצרים אובייקט FirebaseVisionImage מ-Bitmap, מ-media.Image, מ-ByteBuffer, ממערך בייטים או מקובץ במכשיר. לאחר מכן, מעבירים את האובייקט FirebaseVisionImage לשיטה processImage של FirebaseVisionDocumentTextRecognizer.

  1. יוצרים אובייקט FirebaseVisionImage מהתמונה.

    • כדי ליצור אובייקט FirebaseVisionImage מאובייקט media.Image, למשל כשמצלמים תמונה ממצלמת המכשיר, מעבירים את אובייקט media.Image ואת הסיבוב של התמונה אל FirebaseVisionImage.fromMediaImage().

      אם משתמשים בספריית CameraX, המחלקות OnImageCapturedListener ו-ImageAnalysis.Analyzer מחשבות את ערך הסיבוב בשבילכם, כך שאתם רק צריכים להמיר את הסיבוב לאחת מהקבועים של ML Kit‏ ROTATION_ לפני שקוראים ל-FirebaseVisionImage.fromMediaImage():

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }

      Kotlin

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }

      אם לא משתמשים בספריית מצלמה שמספקת את סיבוב התמונה, אפשר לחשב את הסיבוב מסיבוב המכשיר ומכיוון חיישן המצלמה במכשיר:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      לאחר מכן מעבירים את האובייקט media.Image ואת ערך הסיבוב אל FirebaseVisionImage.fromMediaImage():

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • כדי ליצור אובייקט FirebaseVisionImage מ-URI של קובץ, מעבירים את הקשר של האפליקציה ואת ה-URI של הקובץ אל FirebaseVisionImage.fromFilePath(). האפשרות הזו שימושית כשמשתמשים ב-ACTION_GET_CONTENT intent כדי להנחות את המשתמש לבחור תמונה מאפליקציית הגלריה שלו.

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • כדי ליצור אובייקט FirebaseVisionImage מ-ByteBuffer או ממערך בייטים, קודם מחשבים את סיבוב התמונה כמו שמתואר למעלה לגבי קלט media.Image.

      לאחר מכן, יוצרים אובייקט FirebaseVisionImageMetadata שמכיל את הגובה, הרוחב, פורמט קידוד הצבע והסיבוב של התמונה:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      משתמשים במאגר או במערך ובאובייקט המטא-נתונים כדי ליצור אובייקט FirebaseVisionImage:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • כדי ליצור אובייקט FirebaseVisionImage מאובייקט Bitmap:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      התמונה שמיוצגת על ידי אובייקט Bitmap צריכה להיות זקופה, בלי שיהיה צורך בסיבוב נוסף.

  2. קבלת מופע של FirebaseVisionDocumentTextRecognizer:

    Java

    FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer();
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FirebaseVisionCloudDocumentRecognizerOptions options =
            new FirebaseVisionCloudDocumentRecognizerOptions.Builder()
                    .setLanguageHints(Arrays.asList("en", "hi"))
                    .build();
    FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer(options);

    Kotlin

    val detector = FirebaseVision.getInstance()
            .cloudDocumentTextRecognizer
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    val options = FirebaseVisionCloudDocumentRecognizerOptions.Builder()
            .setLanguageHints(listOf("en", "hi"))
            .build()
    val detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer(options)

  3. לבסוף, מעבירים את התמונה לשיטה processImage:

    Java

    detector.processImage(myImage)
            .addOnSuccessListener(new OnSuccessListener<FirebaseVisionDocumentText>() {
                @Override
                public void onSuccess(FirebaseVisionDocumentText result) {
                    // Task completed successfully
                    // ...
                }
            })
            .addOnFailureListener(new OnFailureListener() {
                @Override
                public void onFailure(@NonNull Exception e) {
                    // Task failed with an exception
                    // ...
                }
            });

    Kotlin

    detector.processImage(myImage)
            .addOnSuccessListener { firebaseVisionDocumentText ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener { e ->
                // Task failed with an exception
                // ...
            }

2. חילוץ טקסט מבלוקים של טקסט מזוהה

אם פעולת זיהוי הטקסט תצליח, יוחזר אובייקט FirebaseVisionDocumentText. אובייקט FirebaseVisionDocumentText מכיל את הטקסט המלא שזוהה בתמונה ואת ההיררכיה של האובייקטים שמשקפים את המבנה של המסמך שזוהה:

לכל אובייקט Block, Paragraph, Word ו-Symbol, אפשר לקבל את הטקסט שזוהה באזור ואת קואורדינטות התיחום של האזור.

לדוגמה:

Java

String resultText = result.getText();
for (FirebaseVisionDocumentText.Block block: result.getBlocks()) {
    String blockText = block.getText();
    Float blockConfidence = block.getConfidence();
    List<RecognizedLanguage> blockRecognizedLanguages = block.getRecognizedLanguages();
    Rect blockFrame = block.getBoundingBox();
    for (FirebaseVisionDocumentText.Paragraph paragraph: block.getParagraphs()) {
        String paragraphText = paragraph.getText();
        Float paragraphConfidence = paragraph.getConfidence();
        List<RecognizedLanguage> paragraphRecognizedLanguages = paragraph.getRecognizedLanguages();
        Rect paragraphFrame = paragraph.getBoundingBox();
        for (FirebaseVisionDocumentText.Word word: paragraph.getWords()) {
            String wordText = word.getText();
            Float wordConfidence = word.getConfidence();
            List<RecognizedLanguage> wordRecognizedLanguages = word.getRecognizedLanguages();
            Rect wordFrame = word.getBoundingBox();
            for (FirebaseVisionDocumentText.Symbol symbol: word.getSymbols()) {
                String symbolText = symbol.getText();
                Float symbolConfidence = symbol.getConfidence();
                List<RecognizedLanguage> symbolRecognizedLanguages = symbol.getRecognizedLanguages();
                Rect symbolFrame = symbol.getBoundingBox();
            }
        }
    }
}

Kotlin

val resultText = result.text
for (block in result.blocks) {
    val blockText = block.text
    val blockConfidence = block.confidence
    val blockRecognizedLanguages = block.recognizedLanguages
    val blockFrame = block.boundingBox
    for (paragraph in block.paragraphs) {
        val paragraphText = paragraph.text
        val paragraphConfidence = paragraph.confidence
        val paragraphRecognizedLanguages = paragraph.recognizedLanguages
        val paragraphFrame = paragraph.boundingBox
        for (word in paragraph.words) {
            val wordText = word.text
            val wordConfidence = word.confidence
            val wordRecognizedLanguages = word.recognizedLanguages
            val wordFrame = word.boundingBox
            for (symbol in word.symbols) {
                val symbolText = symbol.text
                val symbolConfidence = symbol.confidence
                val symbolRecognizedLanguages = symbol.recognizedLanguages
                val symbolFrame = symbol.boundingBox
            }
        }
    }
}

השלבים הבאים