অ্যান্ড্রয়েডে এমএল কিট দিয়ে ল্যান্ডমার্ক চিনুন

আপনি একটি ছবিতে সুপরিচিত ল্যান্ডমার্ক চিনতে এমএল কিট ব্যবহার করতে পারেন।

আপনি শুরু করার আগে

  1. যদি আপনি ইতিমধ্যেই না করে থাকেন, তাহলে আপনার Android প্রকল্পে Firebase যোগ করুন
  2. আপনার মডিউল (অ্যাপ-লেভেল) গ্রেডল ফাইলে (সাধারণত app/build.gradle ) ML কিট অ্যান্ড্রয়েড লাইব্রেরির নির্ভরতা যুক্ত করুন :
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
    }
  3. আপনি যদি ইতিমধ্যে আপনার প্রকল্পের জন্য ক্লাউড-ভিত্তিক API সক্ষম না করে থাকেন তবে এখনই তা করুন:

    1. Firebase কনসোলের ML Kit APIs পৃষ্ঠাটি খুলুন।
    2. আপনি যদি ইতিমধ্যেই আপনার প্রোজেক্টকে ব্লেজ প্রাইসিং প্ল্যানে আপগ্রেড না করে থাকেন, তাহলে আপগ্রেড এ ক্লিক করুন। (যদি আপনার প্রকল্পটি ব্লেজ প্ল্যানে না থাকে তবেই আপনাকে আপগ্রেড করার জন্য অনুরোধ করা হবে।)

      শুধুমাত্র ব্লেজ-স্তরের প্রকল্পগুলি ক্লাউড-ভিত্তিক API ব্যবহার করতে পারে।

    3. যদি ক্লাউড-ভিত্তিক APIগুলি ইতিমধ্যে সক্ষম না থাকে, তাহলে ক্লাউড-ভিত্তিক APIগুলি সক্ষম করুন ক্লিক করুন৷

ল্যান্ডমার্ক ডিটেক্টর কনফিগার করুন

ডিফল্টরূপে, ক্লাউড ডিটেক্টর মডেলের STABLE সংস্করণ ব্যবহার করে এবং 10টি পর্যন্ত ফলাফল প্রদান করে। আপনি যদি এই সেটিংসগুলির যেকোনো একটি পরিবর্তন করতে চান, তাহলে একটি FirebaseVisionCloudDetectorOptions অবজেক্টের সাথে সেগুলি নির্দিষ্ট করুন৷

উদাহরণস্বরূপ, উভয় ডিফল্ট সেটিংস পরিবর্তন করতে, নিম্নলিখিত উদাহরণের মতো একটি FirebaseVisionCloudDetectorOptions অবজেক্ট তৈরি করুন:

Java

FirebaseVisionCloudDetectorOptions options =
        new FirebaseVisionCloudDetectorOptions.Builder()
                .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL)
                .setMaxResults(15)
                .build();

Kotlin

val options = FirebaseVisionCloudDetectorOptions.Builder()
        .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL)
        .setMaxResults(15)
        .build()

ডিফল্ট সেটিংস ব্যবহার করতে, আপনি পরবর্তী ধাপে FirebaseVisionCloudDetectorOptions.DEFAULT ব্যবহার করতে পারেন।

ল্যান্ডমার্ক ডিটেক্টর চালান

একটি ছবিতে ল্যান্ডমার্ক চিনতে, একটি Bitmap , media.Image . ইমেজ , ByteBuffer , বাইট অ্যারে বা ডিভাইসের একটি ফাইল থেকে একটি FirebaseVisionImage অবজেক্ট তৈরি করুন৷ তারপর, FirebaseVisionCloudLandmarkDetector এর detectInImage পদ্ধতিতে FirebaseVisionImage অবজেক্টটি পাস করুন।

  1. আপনার ছবি থেকে একটি FirebaseVisionImage অবজেক্ট তৈরি করুন।

    • একটি media.Image থেকে একটি FirebaseVisionImage অবজেক্ট তৈরি করতে। ইমেজ অবজেক্ট, যেমন একটি ডিভাইসের ক্যামেরা থেকে একটি ইমেজ ক্যাপচার করার সময়, media.Image পাস করুন। ইমেজ অবজেক্ট এবং ছবির রোটেশন FirebaseVisionImage.fromMediaImage() এ।

      আপনি যদি CameraX লাইব্রেরি ব্যবহার করেন, OnImageCapturedListener এবং ImageAnalysis.Analyzer ক্লাসগুলি আপনার জন্য ঘূর্ণন মান গণনা করে, তাই আপনাকে FirebaseVisionImage.fromMediaImage() কল করার আগে ML কিটের ROTATION_ ধ্রুবকগুলির মধ্যে একটিতে ঘূর্ণন রূপান্তর করতে হবে।

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }

      Kotlin

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }

      আপনি যদি এমন একটি ক্যামেরা লাইব্রেরি ব্যবহার না করেন যা আপনাকে চিত্রের ঘূর্ণন দেয়, আপনি ডিভাইসের ঘূর্ণন এবং ডিভাইসে ক্যামেরা সেন্সরের অভিযোজন থেকে এটি গণনা করতে পারেন:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      তারপর, media.Image অবজেক্ট এবং ঘূর্ণন মান FirebaseVisionImage.fromMediaImage() এ পাস করুন :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • একটি ফাইল URI থেকে একটি FirebaseVisionImage অবজেক্ট তৈরি করতে, অ্যাপ প্রসঙ্গ এবং ফাইল URI FirebaseVisionImage.fromFilePath() -এ পাস করুন। এটি উপযোগী যখন আপনি একটি ACTION_GET_CONTENT উদ্দেশ্য ব্যবহার করে ব্যবহারকারীকে তাদের গ্যালারি অ্যাপ থেকে একটি ছবি নির্বাচন করতে অনুরোধ করেন৷

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • একটি ByteBuffer বা একটি বাইট অ্যারে থেকে একটি FirebaseVisionImage অবজেক্ট তৈরি করতে, প্রথমে media.Image ইনপুটের জন্য উপরে বর্ণিত চিত্রের ঘূর্ণন গণনা করুন৷

      তারপরে, একটি FirebaseVisionImageMetadata অবজেক্ট তৈরি করুন যাতে ছবির উচ্চতা, প্রস্থ, রঙ এনকোডিং বিন্যাস এবং ঘূর্ণন থাকে:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      একটি FirebaseVisionImage অবজেক্ট তৈরি করতে বাফার বা অ্যারে এবং মেটাডেটা অবজেক্ট ব্যবহার করুন:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • একটি Bitmap বস্তু থেকে একটি FirebaseVisionImage অবজেক্ট তৈরি করতে:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      Bitmap অবজেক্ট দ্বারা উপস্থাপিত চিত্রটি অবশ্যই খাড়া হতে হবে, কোন অতিরিক্ত ঘূর্ণনের প্রয়োজন নেই।

  2. FirebaseVisionCloudLandmarkDetector এর একটি উদাহরণ পান:

    Java

    FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance()
            .getVisionCloudLandmarkDetector();
    // Or, to change the default settings:
    // FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance()
    //         .getVisionCloudLandmarkDetector(options);

    Kotlin

    val detector = FirebaseVision.getInstance()
            .visionCloudLandmarkDetector
    // Or, to change the default settings:
    // val detector = FirebaseVision.getInstance()
    //         .getVisionCloudLandmarkDetector(options)
  3. অবশেষে, চিত্রটিকে detectInImage পদ্ধতিতে পাস করুন:

    Java

    Task<List<FirebaseVisionCloudLandmark>> result = detector.detectInImage(image)
            .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionCloudLandmark>>() {
                @Override
                public void onSuccess(List<FirebaseVisionCloudLandmark> firebaseVisionCloudLandmarks) {
                    // Task completed successfully
                    // ...
                }
            })
            .addOnFailureListener(new OnFailureListener() {
                @Override
                public void onFailure(@NonNull Exception e) {
                    // Task failed with an exception
                    // ...
                }
            });

    Kotlin

    val result = detector.detectInImage(image)
            .addOnSuccessListener { firebaseVisionCloudLandmarks ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener { e ->
                // Task failed with an exception
                // ...
            }

স্বীকৃত ল্যান্ডমার্ক সম্পর্কে তথ্য পান

ল্যান্ডমার্ক রিকগনিশন অপারেশন সফল হলে, FirebaseVisionCloudLandmark বস্তুর একটি তালিকা সফল শ্রোতার কাছে পাঠানো হবে। প্রতিটি FirebaseVisionCloudLandmark অবজেক্ট একটি ল্যান্ডমার্ক উপস্থাপন করে যা ছবিতে স্বীকৃত হয়েছে। প্রতিটি ল্যান্ডমার্কের জন্য, আপনি ইনপুট ইমেজে এর আবদ্ধ স্থানাঙ্ক, ল্যান্ডমার্কের নাম, এর অক্ষাংশ এবং দ্রাঘিমাংশ, এর নলেজ গ্রাফ সত্তা আইডি (যদি উপলব্ধ থাকে), এবং ম্যাচের আত্মবিশ্বাসের স্কোর পেতে পারেন। যেমন:

Java

for (FirebaseVisionCloudLandmark landmark: firebaseVisionCloudLandmarks) {

    Rect bounds = landmark.getBoundingBox();
    String landmarkName = landmark.getLandmark();
    String entityId = landmark.getEntityId();
    float confidence = landmark.getConfidence();

    // Multiple locations are possible, e.g., the location of the depicted
    // landmark and the location the picture was taken.
    for (FirebaseVisionLatLng loc: landmark.getLocations()) {
        double latitude = loc.getLatitude();
        double longitude = loc.getLongitude();
    }
}

Kotlin

for (landmark in firebaseVisionCloudLandmarks) {

    val bounds = landmark.boundingBox
    val landmarkName = landmark.landmark
    val entityId = landmark.entityId
    val confidence = landmark.confidence

    // Multiple locations are possible, e.g., the location of the depicted
    // landmark and the location the picture was taken.
    for (loc in landmark.locations) {
        val latitude = loc.latitude
        val longitude = loc.longitude
    }
}

পরবর্তী পদক্ষেপ