了解 2023 年 Google I/O 大会上介绍的 Firebase 亮点。了解详情

Android'de ML Kit ile Önemli Noktaları Tanıyın

-yer tutucu39 l10n-yer

Bir görüntüdeki iyi bilinen yer işaretlerini tanımak için ML Kit'i kullanabilirsiniz.

Sen başlamadan önce

  1. Henüz yapmadıysanız, Android projenize Firebase'i ekleyin .
  2. Modülünüze (uygulama düzeyinde) ML Kit Android kitaplıklarının bağımlılıklarını ekleyin (genellikle app/build.gradle ):
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
    }
    
  3. Projeniz için Bulut tabanlı API'leri henüz etkinleştirmediyseniz, şimdi yapın:

    1. Firebase konsolunun ML Kit API'leri sayfasını açın.
    2. Projenizi henüz bir Blaze fiyatlandırma planına yükseltmediyseniz, bunu yapmak için Yükselt'e tıklayın. (Yalnızca projeniz Blaze planında değilse yükseltme yapmanız istenir.)

      Yalnızca Blaze düzeyindeki projeler Bulut tabanlı API'leri kullanabilir.

    3. Bulut tabanlı API'ler zaten etkinleştirilmemişse Bulut Tabanlı API'leri Etkinleştir 'i tıklayın.

Yer işareti dedektörünü yapılandırın

Varsayılan olarak, Bulut dedektörü modelin STABLE sürümünü kullanır ve 10 adede kadar sonuç döndürür. Bu ayarlardan herhangi birini değiştirmek isterseniz, bunları bir FirebaseVisionCloudDetectorOptions nesnesiyle belirtin.

Örneğin, varsayılan ayarların her ikisini de değiştirmek için aşağıdaki örnekte olduğu gibi bir FirebaseVisionCloudDetectorOptions nesnesi oluşturun:

Java

FirebaseVisionCloudDetectorOptions options =
        new FirebaseVisionCloudDetectorOptions.Builder()
                .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL)
                .setMaxResults(15)
                .build();

Kotlin+KTX

val options = FirebaseVisionCloudDetectorOptions.Builder()
        .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL)
        .setMaxResults(15)
        .build()

Varsayılan ayarları kullanmak için sonraki adımda FirebaseVisionCloudDetectorOptions.DEFAULT kullanabilirsiniz.

Yer işareti dedektörünü çalıştırın

Bir görüntüdeki yer işaretlerini tanımak için Bitmap , media.Image , ByteBuffer , bayt dizisinden veya cihazdaki bir dosyadan bir FirebaseVisionImage nesnesi oluşturun. Ardından, FirebaseVisionImage nesnesini FirebaseVisionCloudLandmarkDetector ' detectInImage yöntemine iletin.

  1. Görüntünüzden bir FirebaseVisionImage nesnesi oluşturun.

    • Bir cihazın kamerasından bir görüntü yakalarken olduğu gibi, bir FirebaseVisionImage nesnesinden bir media.Image nesnesi oluşturmak için, media.Image nesnesini ve görüntünün dönüşünü FirebaseVisionImage.fromMediaImage FirebaseVisionImage.fromMediaImage() öğesine iletin.

      CameraX kitaplığını kullanırsanız, OnImageCapturedListener ve ImageAnalysis.Analyzer sınıfları sizin için döndürme değerini hesaplar, bu nedenle FirebaseVisionImage.fromMediaImage FirebaseVisionImage.fromMediaImage() öğesini çağırmadan önce dönüşü ML Kit'in ROTATION_ sabitlerinden birine dönüştürmeniz yeterlidir:

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }
      

      Kotlin+KTX

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }
      

      Size görüntünün dönüşünü veren bir kamera kitaplığı kullanmıyorsanız, bunu cihazın dönüşünden ve cihazdaki kamera sensörünün oryantasyonundan hesaplayabilirsiniz:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin+KTX

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Ardından media.Image nesnesini ve döndürme değerini FirebaseVisionImage.fromMediaImage FirebaseVisionImage.fromMediaImage() öğesine iletin:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • Bir dosya URI'sinden bir FirebaseVisionImage nesnesi oluşturmak için uygulama bağlamını ve dosya URI'sini FirebaseVisionImage.fromFilePath() . Bu, kullanıcıdan galeri uygulamasından bir resim seçmesini istemek için bir ACTION_GET_CONTENT amacı kullandığınızda kullanışlıdır.

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin+KTX

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • Bir ByteBuffer veya bir bayt dizisinden bir FirebaseVisionImage nesnesi oluşturmak için, önce media.Image girişi için yukarıda açıklandığı gibi görüntü döndürmeyi hesaplayın.

      Ardından, görüntünün yüksekliğini, genişliğini, renk kodlama biçimini ve dönüşünü içeren bir FirebaseVisionImageMetadata nesnesi oluşturun:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin+KTX

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      Bir FirebaseVisionImage nesnesi oluşturmak için arabelleği veya diziyi ve meta veri nesnesini kullanın:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • Bir Bitmap nesnesinden bir FirebaseVisionImage nesnesi oluşturmak için:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      Bitmap nesnesi tarafından temsil edilen görüntü, ek bir döndürme gerektirmeden dik olmalıdır.

  2. FirebaseVisionCloudLandmarkDetector örneğini alın:

    Java

    FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance()
            .getVisionCloudLandmarkDetector();
    // Or, to change the default settings:
    // FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance()
    //         .getVisionCloudLandmarkDetector(options);

    Kotlin+KTX

    val detector = FirebaseVision.getInstance()
            .visionCloudLandmarkDetector
    // Or, to change the default settings:
    // val detector = FirebaseVision.getInstance()
    //         .getVisionCloudLandmarkDetector(options)
  3. Son olarak, görüntüyüDetectInImage yöntemine detectInImage :

    Java

    Task<List<FirebaseVisionCloudLandmark>> result = detector.detectInImage(image)
            .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionCloudLandmark>>() {
                @Override
                public void onSuccess(List<FirebaseVisionCloudLandmark> firebaseVisionCloudLandmarks) {
                    // Task completed successfully
                    // ...
                }
            })
            .addOnFailureListener(new OnFailureListener() {
                @Override
                public void onFailure(@NonNull Exception e) {
                    // Task failed with an exception
                    // ...
                }
            });

    Kotlin+KTX

    val result = detector.detectInImage(image)
            .addOnSuccessListener { firebaseVisionCloudLandmarks ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener { e ->
                // Task failed with an exception
                // ...
            }

Tanınan yer işaretleri hakkında bilgi alın

Yer işareti tanıma işlemi başarılı olursa, başarılı dinleyiciye FirebaseVisionCloudLandmark nesnelerinin bir listesi iletilecektir. Her FirebaseVisionCloudLandmark nesnesi, görüntüde tanınan bir yer işaretini temsil eder. Her yer işareti için, giriş görüntüsündeki sınırlayıcı koordinatlarını, yer işaretinin adını, enlem ve boylamını, Bilgi Grafiği varlık kimliğini (varsa) ve eşleşmenin güven puanını alabilirsiniz. Örneğin:

Java

for (FirebaseVisionCloudLandmark landmark: firebaseVisionCloudLandmarks) {

    Rect bounds = landmark.getBoundingBox();
    String landmarkName = landmark.getLandmark();
    String entityId = landmark.getEntityId();
    float confidence = landmark.getConfidence();

    // Multiple locations are possible, e.g., the location of the depicted
    // landmark and the location the picture was taken.
    for (FirebaseVisionLatLng loc: landmark.getLocations()) {
        double latitude = loc.getLatitude();
        double longitude = loc.getLongitude();
    }
}

Kotlin+KTX

for (landmark in firebaseVisionCloudLandmarks) {

    val bounds = landmark.boundingBox
    val landmarkName = landmark.landmark
    val entityId = landmark.entityId
    val confidence = landmark.confidence

    // Multiple locations are possible, e.g., the location of the depicted
    // landmark and the location the picture was taken.
    for (loc in landmark.locations) {
        val latitude = loc.latitude
        val longitude = loc.longitude
    }
}

Sonraki adımlar