Za pomocą pakietu ML Kit możesz oznaczać obiekty rozpoznane na obrazie za pomocą: na urządzeniu czy w chmurze. Zobacz omówienie, aby poznać zalety z każdego podejścia.
Zanim zaczniesz
- Jeśli jeszcze nie masz tego za sobą, dodaj Firebase do swojego projektu na Androida.
- Dodaj do modułu zależności między bibliotekami ML Kit na Androida
Plik Gradle (na poziomie aplikacji) (zwykle
app/build.gradle
):apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' implementation 'com.google.firebase:firebase-ml-vision-image-label-model:20.0.1' }
-
Opcjonalne, ale zalecane: jeśli używasz interfejsu API działającego na urządzeniu, skonfiguruj
automatycznie pobiera model ML na urządzenie po tym, jak aplikacja zostanie
ze Sklepu Play.
Aby to zrobić, dodaj tę deklarację do Plik
AndroidManifest.xml
: Jeśli nie włączysz pobierania modelu w czasie instalacji, model zostanie pobrane przy pierwszym uruchomieniu detektora na urządzeniu. Twoje prośby przed zakończeniem pobierania nie przyniesie żadnych wyników.<application ...> ... <meta-data android:name="com.google.firebase.ml.vision.DEPENDENCIES" android:value="label" /> <!-- To use multiple models: android:value="label,model2,model3" --> </application>
-
Jeśli chcesz używać modelu działającego w chmurze, który nie został jeszcze włączony interfejsów API działających w chmurze w Twoim projekcie, zrób to teraz:
- Otwórz ML Kit Strona interfejsów API w konsoli Firebase.
-
Jeśli w swoim projekcie nie korzystasz jeszcze z abonamentu Blaze, kliknij Aby to zrobić, przejdź na wyższą wersję. (Prośba o uaktualnienie wyświetli się tylko wtedy, gdy projekt nie jest objęty abonamentem Blaze).
Tylko projekty na poziomie Blaze mogą korzystać z interfejsów API działających w chmurze.
- Jeśli interfejsy API działające w chmurze nie są włączone, kliknij Włącz działające w chmurze interfejsów API.
Jeśli chcesz używać tylko modelu na urządzeniu, możesz pominąć ten krok.
Teraz możesz oznaczać obrazy etykietami za pomocą modelu na urządzeniu lub i model działający w chmurze.
1. Przygotowywanie obrazu wejściowego
Utwórz obiektFirebaseVisionImage
na podstawie swojego obrazu.
Twórca etykiet obrazów działa najszybciej, gdy używasz interfejsu Bitmap
lub
Camera2 API oraz media.Image
w formacie JPEG, które są zalecane,
jak to tylko możliwe.
-
Aby utworzyć obiekt
FirebaseVisionImage
na podstawiemedia.Image
, np. podczas przechwytywania obrazu z z aparatu urządzenia, przekazać obiektmedia.Image
oraz w kierunkuFirebaseVisionImage.fromMediaImage()
.Jeśli używasz tagu CameraX,
OnImageCapturedListener
orazImageAnalysis.Analyzer
klasy obliczają wartość rotacji więc wystarczy zmienić rotację na jeden z zestawów ML Kit StałyROTATION_
przed nawiązaniem połączeniaFirebaseVisionImage.fromMediaImage()
:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
Jeśli nie korzystasz z biblioteki aparatu zapewniającej obrót obrazu, może go obliczyć na podstawie obrotu urządzenia i orientacji aparatu czujnik w urządzeniu:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Następnie przekaż obiekt
media.Image
oraz wartość rotacji doFirebaseVisionImage.fromMediaImage()
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- Aby utworzyć obiekt
FirebaseVisionImage
na podstawie identyfikatora URI pliku, przekaż kontekst aplikacji i identyfikator URI plikuFirebaseVisionImage.fromFilePath()
Jest to przydatne, gdy użyj intencjiACTION_GET_CONTENT
, aby zachęcić użytkownika do wyboru obraz z aplikacji Galeria.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- Aby utworzyć obiekt
FirebaseVisionImage
na podstawieByteBuffer
lub tablicy bajtów, najpierw oblicz wartość obrazu w sposób opisany powyżej dla danych wejściowychmedia.Image
.Następnie utwórz obiekt
FirebaseVisionImageMetadata
określającą wysokość, szerokość i format kodowania kolorów obrazu i rotacja:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Za pomocą bufora lub tablicy oraz obiektu metadanych utwórz
FirebaseVisionImage
obiekt:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- Aby utworzyć obiekt
FirebaseVisionImage
na podstawie ObiektBitmap
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
musi być pionowo bez konieczności dodatkowego obracania.
2. Skonfiguruj i uruchom osobę oznaczającą obrazy
Aby oznaczyć etykietami obiekty na obrazie, przekaż obiektFirebaseVisionImage
do funkcji
Metoda processImage
użytkownika FirebaseVisionImageLabeler
.
Najpierw pobierz wystąpienie
FirebaseVisionImageLabeler
Jeśli chcesz użyć narzędzia do oznaczania obrazów etykietami na urządzeniu:
Java
FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() .getOnDeviceImageLabeler(); // Or, to set the minimum confidence required: // FirebaseVisionOnDeviceImageLabelerOptions options = // new FirebaseVisionOnDeviceImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build(); // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() // .getOnDeviceImageLabeler(options);
Kotlin+KTX
val labeler = FirebaseVision.getInstance().getOnDeviceImageLabeler() // Or, to set the minimum confidence required: // val options = FirebaseVisionOnDeviceImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build() // val labeler = FirebaseVision.getInstance().getOnDeviceImageLabeler(options)
Jeśli chcesz użyć narzędzia do oznaczania obrazów w chmurze:
Java
FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() .getCloudImageLabeler(); // Or, to set the minimum confidence required: // FirebaseVisionCloudImageLabelerOptions options = // new FirebaseVisionCloudImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build(); // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() // .getCloudImageLabeler(options);
Kotlin+KTX
val labeler = FirebaseVision.getInstance().getCloudImageLabeler() // Or, to set the minimum confidence required: // val options = FirebaseVisionCloudImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build() // val labeler = FirebaseVision.getInstance().getCloudImageLabeler(options)
Następnie przekaż obraz do metody
processImage()
:Java
labeler.processImage(image) .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() { @Override public void onSuccess(List<FirebaseVisionImageLabel> labels) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin+KTX
labeler.processImage(image) .addOnSuccessListener { labels -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
3. Uzyskiwanie informacji o obiektach oznaczonych etykietami
Jeśli operacja oznaczania obrazów etykietami zakończy się powodzeniem, listaFirebaseVisionImageLabel
obiektów zostanie przekazanych do
słuchaczem sukcesu. Każdy obiekt FirebaseVisionImageLabel
reprezentuje coś
oznaczony etykietą na zdjęciu. Dla każdej etykiety możesz znaleźć jej tekst
opis, jego
Identyfikator elementu Grafu wiedzy
(jeśli jest dostępny) oraz wskaźnik ufności dopasowania. Przykład:
Java
for (FirebaseVisionImageLabel label: labels) {
String text = label.getText();
String entityId = label.getEntityId();
float confidence = label.getConfidence();
}
Kotlin+KTX
for (label in labels) {
val text = label.text
val entityId = label.entityId
val confidence = label.confidence
}
Wskazówki dotyczące poprawy skuteczności w czasie rzeczywistym
Jeśli chcesz oznaczać obrazy w aplikacji działającej w czasie rzeczywistym, postępuj zgodnie z tymi instrukcjami wytycznych dotyczących uzyskiwania najlepszej liczby klatek na sekundę:
- Ogranicz wywołania do osoby oznaczającej obrazy. Jeśli nowa klatka wideo dostępne podczas działania narzędzia do etykietowania obrazów, upuść ramkę.
- Jeśli używasz danych wyjściowych osoby oznaczającej obrazy do nakładania grafiki na obrazu wejściowego, najpierw pobierz wynik z ML Kit, a następnie wyrenderuj obraz i nakładanie nakładek w jednym kroku. W ten sposób renderowanie na powierzchni tylko raz na każdą ramkę wejściową.
-
Jeśli korzystasz z interfejsu API Camera2, rób zdjęcia w Format:
ImageFormat.YUV_420_888
.Jeśli używasz starszej wersji interfejsu Camera API, rób zdjęcia w Format:
ImageFormat.NV21
.
Dalsze kroki
- Przed wdrożeniem w środowisku produkcyjnym aplikacji korzystającej z interfejsu Cloud API wykonaj dodatkowe kroki, które zapobiegają i ograniczają efekt nieautoryzowanego dostępu do interfejsu API.