在 Android 上使用 ML Kit 標記圖像

您可以使用 ML Kit 標記圖像中識別的對象,使用設備上的模型或云模型。請參閱概述以了解每種方法的好處。

在你開始之前

  1. 如果您還沒有,請將 Firebase 添加到您的 Android 項目中。
  2. 將 ML Kit Android 庫的依賴項添加到您的模塊(應用級)Gradle 文件(通常是app/build.gradle ):
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
      implementation 'com.google.firebase:firebase-ml-vision-image-label-model:20.0.1'
    }
    
  3. 可選但推薦:如果您使用設備上 API,請將您的應用配置為在從 Play 商店安裝您的應用後自動將 ML 模型下載到設備。

    為此,請將以下聲明添加到您應用的AndroidManifest.xml文件中:

    <application ...>
      ...
      <meta-data
          android:name="com.google.firebase.ml.vision.DEPENDENCIES"
          android:value="label" />
      <!-- To use multiple models: android:value="label,model2,model3" -->
    </application>
    
    如果您不啟用安裝時模型下載,則模型將在您第一次運行設備檢測器時下載。您在下載完成之前提出的請求不會產生任何結果。
  4. 如果您想使用基於雲的模型,並且尚未為您的項目啟用基於雲的 API,請立即執行此操作:

    1. 打開 Firebase 控制台的ML Kit API 頁面
    2. 如果您尚未將項目升級到 Blaze 定價計劃,請單擊升級以執行此操作。 (僅當您的項目不在 Blaze 計劃中時,系統才會提示您升級。)

      只有 Blaze 級項目可以使用基於雲的 API。

    3. 如果尚未啟用基於雲的 API,請單擊啟用基於雲的 API

    如果您只想使用設備端模型,則可以跳過此步驟。

現在您已準備好使用設備上模型或基於雲的模型來標記圖像。

1.準備輸入圖像

從您的圖像創建一個FirebaseVisionImage對象。當您使用Bitmap或如果您使用 camera2 API 時,圖像標註器運行速度最快,如果可能,建議使用 JPEG 格式的media.Image

  • 要從media.Image對象創建FirebaseVisionImage對象,例如從設備的攝像頭捕獲圖像時,請將media.Image對象和圖像的旋轉傳遞給FirebaseVisionImage.fromMediaImage()

    如果您使用CameraX庫, OnImageCapturedListenerImageAnalysis.Analyzer類會為您計算旋轉值,因此您只需在調用FirebaseVisionImage.fromMediaImage()之前將旋轉轉換為 ML Kit 的ROTATION_常量之一:

    Java

    private class YourAnalyzer implements ImageAnalysis.Analyzer {
    
        private int degreesToFirebaseRotation(int degrees) {
            switch (degrees) {
                case 0:
                    return FirebaseVisionImageMetadata.ROTATION_0;
                case 90:
                    return FirebaseVisionImageMetadata.ROTATION_90;
                case 180:
                    return FirebaseVisionImageMetadata.ROTATION_180;
                case 270:
                    return FirebaseVisionImageMetadata.ROTATION_270;
                default:
                    throw new IllegalArgumentException(
                            "Rotation must be 0, 90, 180, or 270.");
            }
        }
    
        @Override
        public void analyze(ImageProxy imageProxy, int degrees) {
            if (imageProxy == null || imageProxy.getImage() == null) {
                return;
            }
            Image mediaImage = imageProxy.getImage();
            int rotation = degreesToFirebaseRotation(degrees);
            FirebaseVisionImage image =
                    FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
    

    Kotlin+KTX

    private class YourImageAnalyzer : ImageAnalysis.Analyzer {
        private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
            0 -> FirebaseVisionImageMetadata.ROTATION_0
            90 -> FirebaseVisionImageMetadata.ROTATION_90
            180 -> FirebaseVisionImageMetadata.ROTATION_180
            270 -> FirebaseVisionImageMetadata.ROTATION_270
            else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
        }
    
        override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
            val mediaImage = imageProxy?.image
            val imageRotation = degreesToFirebaseRotation(degrees)
            if (mediaImage != null) {
                val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                // Pass image to an ML Kit Vision API
                // ...
            }
        }
    }
    

    如果您不使用為您提供圖像旋轉的相機庫,您可以根據設備的旋轉和設備中相機傳感器的方向來計算它:

    Java

    private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
    static {
        ORIENTATIONS.append(Surface.ROTATION_0, 90);
        ORIENTATIONS.append(Surface.ROTATION_90, 0);
        ORIENTATIONS.append(Surface.ROTATION_180, 270);
        ORIENTATIONS.append(Surface.ROTATION_270, 180);
    }
    
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    private int getRotationCompensation(String cameraId, Activity activity, Context context)
            throws CameraAccessException {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
        int rotationCompensation = ORIENTATIONS.get(deviceRotation);
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
        int sensorOrientation = cameraManager
                .getCameraCharacteristics(cameraId)
                .get(CameraCharacteristics.SENSOR_ORIENTATION);
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        int result;
        switch (rotationCompensation) {
            case 0:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                break;
            case 90:
                result = FirebaseVisionImageMetadata.ROTATION_90;
                break;
            case 180:
                result = FirebaseVisionImageMetadata.ROTATION_180;
                break;
            case 270:
                result = FirebaseVisionImageMetadata.ROTATION_270;
                break;
            default:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                Log.e(TAG, "Bad rotation value: " + rotationCompensation);
        }
        return result;
    }

    Kotlin+KTX

    private val ORIENTATIONS = SparseIntArray()
    
    init {
        ORIENTATIONS.append(Surface.ROTATION_0, 90)
        ORIENTATIONS.append(Surface.ROTATION_90, 0)
        ORIENTATIONS.append(Surface.ROTATION_180, 270)
        ORIENTATIONS.append(Surface.ROTATION_270, 180)
    }
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    @Throws(CameraAccessException::class)
    private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        val deviceRotation = activity.windowManager.defaultDisplay.rotation
        var rotationCompensation = ORIENTATIONS.get(deviceRotation)
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
        val sensorOrientation = cameraManager
                .getCameraCharacteristics(cameraId)
                .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        val result: Int
        when (rotationCompensation) {
            0 -> result = FirebaseVisionImageMetadata.ROTATION_0
            90 -> result = FirebaseVisionImageMetadata.ROTATION_90
            180 -> result = FirebaseVisionImageMetadata.ROTATION_180
            270 -> result = FirebaseVisionImageMetadata.ROTATION_270
            else -> {
                result = FirebaseVisionImageMetadata.ROTATION_0
                Log.e(TAG, "Bad rotation value: $rotationCompensation")
            }
        }
        return result
    }

    然後,將media.Image對象和旋轉值傳遞給FirebaseVisionImage.fromMediaImage()

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

    Kotlin+KTX

    val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
  • 要從文件 URI 創建FirebaseVisionImage對象,請將應用上下文和文件 URI 傳遞給FirebaseVisionImage.fromFilePath() 。當您使用ACTION_GET_CONTENT意圖提示用戶從他們的圖庫應用中選擇圖像時,這很有用。

    Java

    FirebaseVisionImage image;
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri);
    } catch (IOException e) {
        e.printStackTrace();
    }

    Kotlin+KTX

    val image: FirebaseVisionImage
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri)
    } catch (e: IOException) {
        e.printStackTrace()
    }
  • 要從ByteBuffer或字節數組創建FirebaseVisionImage對象,請首先按照上面針對media.Image輸入的描述計算圖像旋轉。

    然後,創建一個FirebaseVisionImageMetadata對象,其中包含圖像的高度、寬度、顏色編碼格式和旋轉:

    Java

    FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
            .setWidth(480)   // 480x360 is typically sufficient for
            .setHeight(360)  // image recognition
            .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
            .setRotation(rotation)
            .build();

    Kotlin+KTX

    val metadata = FirebaseVisionImageMetadata.Builder()
            .setWidth(480) // 480x360 is typically sufficient for
            .setHeight(360) // image recognition
            .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
            .setRotation(rotation)
            .build()

    使用緩衝區或數組以及元數據對象來創建FirebaseVisionImage對象:

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
    // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

    Kotlin+KTX

    val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
    // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
  • 要從Bitmap對象創建FirebaseVisionImage對象:

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

    Kotlin+KTX

    val image = FirebaseVisionImage.fromBitmap(bitmap)
    Bitmap對象表示的圖像必須是直立的,不需要額外的旋轉。

2. 配置並運行圖像標註器

要標記圖像中的對象,請將FirebaseVisionImageLabeler FirebaseVisionImage processImage方法。

  1. 首先,獲取FirebaseVisionImageLabeler的實例。

    如果您想使用設備上的圖像標註器:

    Java

    FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
        .getOnDeviceImageLabeler();
    
    // Or, to set the minimum confidence required:
    // FirebaseVisionOnDeviceImageLabelerOptions options =
    //     new FirebaseVisionOnDeviceImageLabelerOptions.Builder()
    //         .setConfidenceThreshold(0.7f)
    //         .build();
    // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
    //     .getOnDeviceImageLabeler(options);
    

    Kotlin+KTX

    val labeler = FirebaseVision.getInstance().getOnDeviceImageLabeler()
    
    // Or, to set the minimum confidence required:
    // val options = FirebaseVisionOnDeviceImageLabelerOptions.Builder()
    //     .setConfidenceThreshold(0.7f)
    //     .build()
    // val labeler = FirebaseVision.getInstance().getOnDeviceImageLabeler(options)
    

    如果要使用雲圖像標註器:

    Java

    FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
        .getCloudImageLabeler();
    
    // Or, to set the minimum confidence required:
    // FirebaseVisionCloudImageLabelerOptions options =
    //     new FirebaseVisionCloudImageLabelerOptions.Builder()
    //         .setConfidenceThreshold(0.7f)
    //         .build();
    // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
    //     .getCloudImageLabeler(options);
    

    Kotlin+KTX

    val labeler = FirebaseVision.getInstance().getCloudImageLabeler()
    
    // Or, to set the minimum confidence required:
    // val options = FirebaseVisionCloudImageLabelerOptions.Builder()
    //     .setConfidenceThreshold(0.7f)
    //     .build()
    // val labeler = FirebaseVision.getInstance().getCloudImageLabeler(options)
    

  2. 然後,將圖像傳遞給processImage()方法:

    Java

    labeler.processImage(image)
        .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() {
          @Override
          public void onSuccess(List<FirebaseVisionImageLabel> labels) {
            // Task completed successfully
            // ...
          }
        })
        .addOnFailureListener(new OnFailureListener() {
          @Override
          public void onFailure(@NonNull Exception e) {
            // Task failed with an exception
            // ...
          }
        });
    

    Kotlin+KTX

    labeler.processImage(image)
        .addOnSuccessListener { labels ->
          // Task completed successfully
          // ...
        }
        .addOnFailureListener { e ->
          // Task failed with an exception
          // ...
        }
    

3. 獲取標記對象的信息

如果圖像標記操作成功, FirebaseVisionImageLabel對象列表將傳遞給成功偵聽器。每個FirebaseVisionImageLabel對像都代表圖像中標記的內容。對於每個標籤,您可以獲得標籤的文本描述、其知識圖實體 ID (如果可用)和匹配的置信度分數。例如:

Java

for (FirebaseVisionImageLabel label: labels) {
  String text = label.getText();
  String entityId = label.getEntityId();
  float confidence = label.getConfidence();
}

Kotlin+KTX

for (label in labels) {
  val text = label.text
  val entityId = label.entityId
  val confidence = label.confidence
}

提高實時性能的技巧

如果您想在實時應用程序中標記圖像,請遵循以下指南以獲得最佳幀率:

  • 限制對圖像標註器的調用。如果在圖像標註器運行時有新的視頻幀可用,則丟棄該幀。
  • 如果您使用圖像標註器的輸出在輸入圖像上疊加圖形,首先從 ML Kit 獲取結果,然後在一個步驟中渲染圖像並疊加。通過這樣做,您只為每個輸入幀渲染到顯示表面一次。
  • 如果您使用 Camera2 API,請以ImageFormat.YUV_420_888格式捕獲圖像。

    如果您使用較舊的 Camera API,請以ImageFormat.NV21格式捕獲圖像。

下一步