Video karelerindeki nesneleri algılamak ve izlemek için ML Kit'i kullanabilirsiniz.
ML Kit resimlerini ilettiğinizde ML Kit, her resim için algılanan en fazla beş nesnenin listesini ve bu nesnelerin resimdeki konumunu döndürür. Video akışlarındaki nesneleri algılarken her nesnenin, nesneyi resimlerde izlemek için kullanabileceğiniz bir kimliği vardır. İsteğe bağlı olarak, nesneleri geniş kategori açıklamalarıyla etiketleyen kaba nesne sınıflandırmasını da etkinleştirebilirsiniz.
Başlamadan önce
- Henüz yapmadıysanız Firebase'i Android projenize ekleyin.
- ML Kit Android kitaplıklarının bağımlılıkları modülünüzün (uygulama düzeyinde) Gradle dosyasına (genellikle
app/build.gradle
) eklenmelidir:apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' implementation 'com.google.firebase:firebase-ml-vision-object-detection-model:19.0.6' }
1. Nesne algılayıcıyı yapılandırma
Nesneleri algılamaya ve izlemeye başlamak için önce bir FirebaseVisionObjectDetector
örneği oluşturun ve isteğe bağlı olarak varsayılan ayarlardan değiştirmek istediğiniz algılayıcı ayarlarını belirtin.
Nesne algılayıcıyı kullanım alanınız için bir
FirebaseVisionObjectDetectorOptions
nesnesi ile yapılandırın. Aşağıdaki ayarları değiştirebilirsiniz:Nesne Algılayıcı Ayarları Algılama modu STREAM_MODE
(varsayılan) |SINGLE_IMAGE_MODE
STREAM_MODE
(varsayılan) değerinde, nesne algılayıcı düşük gecikmeli olarak çalışır ancak algılayıcının ilk birkaç çağrısında eksik sonuçlar (ör. belirtilmemiş sınırlayıcı kutular veya kategori etiketleri) verebilir. AyrıcaSTREAM_MODE
'te algılayıcı, nesnelere izleme kimlikleri atar. Bu kimlikleri, nesneleri kareler arasında izlemek için kullanabilirsiniz. Nesneleri izlemek istediğinizde veya düşük gecikmenin önemli olduğu durumlarda (ör. video akışlarını gerçek zamanlı olarak işlerken) bu modu kullanın.SINGLE_IMAGE_MODE
işlevinde nesne algılayıcı, bir sonuç döndürmeden önce algılanan nesnenin sınırlayıcı kutusunun ve (sınıflandırmayı etkinleştirdiyseniz) kategori etiketinin kullanılabilir olmasını bekler. Sonuç olarak, algılama gecikmesi muhtemelen daha yüksektir. AyrıcaSINGLE_IMAGE_MODE
'te izleme kimlikleri atanmaz. Gecikme kritik değilse ve kısmi sonuçlarla uğraşmak istemiyorsanız bu modu kullanın.Birden fazla nesneyi algılama ve izleme false
(varsayılan) |true
En fazla beş nesnenin mi yoksa yalnızca en belirgin nesnenin mi algılanıp izleneceğini belirler (varsayılan).
Nesneleri sınıflandırma false
(varsayılan) |true
Algılanan nesnelerin kaba kategorilere sınıflandırılıp sınıflandırılmayacağı. Nesne algılayıcı etkinleştirildiğinde nesneleri aşağıdaki kategorilere sınıflandırır: moda ürünleri, gıda, ev eşyaları, yerler, bitkiler ve bilinmeyen.
Nesne algılama ve izleme API'si, aşağıdaki iki temel kullanım alanı için optimize edilmiştir:
- Kamera vizöründeki en belirgin nesnenin canlı algılanması ve izlenmesi
- Statik bir resimde birden fazla nesnenin algılanması
API'yi bu kullanım alanları için yapılandırmak üzere:
Java
// Live detection and tracking FirebaseVisionObjectDetectorOptions options = new FirebaseVisionObjectDetectorOptions.Builder() .setDetectorMode(FirebaseVisionObjectDetectorOptions.STREAM_MODE) .enableClassification() // Optional .build(); // Multiple object detection in static images FirebaseVisionObjectDetectorOptions options = new FirebaseVisionObjectDetectorOptions.Builder() .setDetectorMode(FirebaseVisionObjectDetectorOptions.SINGLE_IMAGE_MODE) .enableMultipleObjects() .enableClassification() // Optional .build();
Kotlin
// Live detection and tracking val options = FirebaseVisionObjectDetectorOptions.Builder() .setDetectorMode(FirebaseVisionObjectDetectorOptions.STREAM_MODE) .enableClassification() // Optional .build() // Multiple object detection in static images val options = FirebaseVisionObjectDetectorOptions.Builder() .setDetectorMode(FirebaseVisionObjectDetectorOptions.SINGLE_IMAGE_MODE) .enableMultipleObjects() .enableClassification() // Optional .build()
FirebaseVisionObjectDetector
örneğini alın:Java
FirebaseVisionObjectDetector objectDetector = FirebaseVision.getInstance().getOnDeviceObjectDetector(); // Or, to change the default settings: FirebaseVisionObjectDetector objectDetector = FirebaseVision.getInstance().getOnDeviceObjectDetector(options);
Kotlin
val objectDetector = FirebaseVision.getInstance().getOnDeviceObjectDetector() // Or, to change the default settings: val objectDetector = FirebaseVision.getInstance().getOnDeviceObjectDetector(options)
2. Nesne algılayıcıyı çalıştırma
Nesneleri algılamak ve izlemek için görüntüleri FirebaseVisionObjectDetector
örneğinin processImage()
yöntemine iletin.
Bir sekanstaki her video veya resim karesi için aşağıdakileri yapın:
Resminizden bir
FirebaseVisionImage
nesnesi oluşturun.-
Bir
media.Image
nesnesindenFirebaseVisionImage
nesnesi oluşturmak için (ör. bir cihazın kamerasından resim çekerken)media.Image
nesnesini ve resmin dönme açısınıFirebaseVisionImage.fromMediaImage()
'ye iletin.CameraX kitaplığını kullanıyorsanız
OnImageCapturedListener
veImageAnalysis.Analyzer
sınıfları rotasyon değerini sizin için hesaplar. Bu nedenle,FirebaseVisionImage.fromMediaImage()
işlevini çağırmadan önce rotasyonu ML Kit'inROTATION_
sabitlerinden birine dönüştürmeniz yeterlidir:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
Resmin dönme açısını gösteren bir kamera kitaplığı kullanmıyorsanız bunu cihazın dönme açısını ve cihazdaki kamera sensörünün yönünü kullanarak hesaplayabilirsiniz:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Ardından,
media.Image
nesnesini ve dönüş değeriniFirebaseVisionImage.fromMediaImage()
'e gönderin:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- Dosya URI'sinden
FirebaseVisionImage
nesnesi oluşturmak için uygulama bağlamını ve dosya URI'siniFirebaseVisionImage.fromFilePath()
'a iletin. Bu, kullanıcıdan galeri uygulamasından bir resim seçmesini istemek içinACTION_GET_CONTENT
intent'i kullandığınızda kullanışlıdır.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- Bir
ByteBuffer
veya bayt dizisindenFirebaseVisionImage
nesnesi oluşturmak için önce,media.Image
girişi için yukarıda açıklandığı şekilde resim rotasyonunu hesaplayın.Ardından, resmin yüksekliğini, genişliğini, renk kodlama biçimini ve döndürülmüş durumunu içeren bir
FirebaseVisionImageMetadata
nesnesi oluşturun:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
FirebaseVisionImage
nesnesi oluşturmak için arabellek veya diziyi ve meta veri nesnesini kullanın:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
Bitmap
nesnesindenFirebaseVisionImage
nesnesi oluşturmak için:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
nesnesi tarafından temsil edilen resim dik olmalıdır ve ek döndürme işlemi gerekmemelidir.
-
Resmi
processImage()
yöntemine iletin:Java
objectDetector.processImage(image) .addOnSuccessListener( new OnSuccessListener<List<FirebaseVisionObject>>() { @Override public void onSuccess(List<FirebaseVisionObject> detectedObjects) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin
objectDetector.processImage(image) .addOnSuccessListener { detectedObjects -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
processImage()
çağrısı başarılı olursa başarı dinleyicisine birFirebaseVisionObject
listesi iletilir.Her
FirebaseVisionObject
aşağıdaki özellikleri içerir:Sınırlayıcı kutu Nesnenin resimdeki konumunu gösteren bir Rect
.İzleme Kimliği Nesneyi resimlerde tanımlayan bir tam sayı. SINGLE_IMAGE_MODE'da null. Kategori Nesnenin kaba kategorisi. Nesne algılayıcıda sınıflandırma etkin değilse bu değer her zaman FirebaseVisionObject.CATEGORY_UNKNOWN
olur.Güven Nesne sınıflandırmasının güven değeri. Nesne algılayıcıda sınıflandırma etkin değilse veya nesne bilinmeyen olarak sınıflandırılmışsa bu değer null
olur.Java
// The list of detected objects contains one item if multiple object detection wasn't enabled. for (FirebaseVisionObject obj : detectedObjects) { Integer id = obj.getTrackingId(); Rect bounds = obj.getBoundingBox(); // If classification was enabled: int category = obj.getClassificationCategory(); Float confidence = obj.getClassificationConfidence(); }
Kotlin
// The list of detected objects contains one item if multiple object detection wasn't enabled. for (obj in detectedObjects) { val id = obj.trackingId // A number that identifies the object across images val bounds = obj.boundingBox // The object's position in the image // If classification was enabled: val category = obj.classificationCategory val confidence = obj.classificationConfidence }
Kullanılabilirliği ve performansı iyileştirme
En iyi kullanıcı deneyimi için uygulamanızda aşağıdaki yönergeleri uygulayın:
- Nesne algılamanın başarısı, nesnenin görsel karmaşıklığına bağlıdır. Görsel özellikleri az olan nesnelerin algılanması için görüntünün daha büyük bir kısmını kaplaması gerekebilir. Kullanıcılara, algılamak istediğiniz nesne türleriyle iyi çalışan girişler yakalama konusunda yol göstermeniz gerekir.
- Sınıflandırmayı kullanırken, desteklenen kategorilere tam olarak uymayan nesneleri algılamak istiyorsanız bilinmeyen nesneler için özel işlem uygulayın.
Ayrıca [ML Kit Material Design showcase uygulamasına][showcase-link]{: .external } ve Material Design Makine öğrenimi destekli özellikler için desenler koleksiyonuna göz atın.
Gerçek zamanlı bir uygulamada akış modunu kullanırken en iyi kare hızlarını elde etmek için aşağıdaki yönergeleri uygulayın:
Çoğu cihaz yeterli kare hızını sağlayamayacağından, akış modunda birden fazla nesne algılama özelliğini kullanmayın.
İhtiyacınız yoksa sınıflandırmayı devre dışı bırakın.
- Dedektöre yapılan çağrıları azaltın. Algılayıcı çalışırken yeni bir video karesi kullanılabilir hale gelirse kareyi bırakın.
- Giriş resmine grafik yerleştirmek için algılayıcının çıkışını kullanıyorsanız önce ML Kit'ten sonucu alın, ardından resmi ve yer paylaşımını tek bir adımda oluşturun. Böylece, her giriş çerçevesi için ekran yüzeyinde yalnızca bir kez oluşturma işlemi gerçekleştirirsiniz.
-
Camera2 API'yi kullanıyorsanız resimleri
ImageFormat.YUV_420_888
biçiminde kaydedin.Eski Camera API'yi kullanıyorsanız resimleri
ImageFormat.NV21
biçiminde çekin.