वीडियो के अलग-अलग फ़्रेम में ऑब्जेक्ट का पता लगाने और उन्हें ट्रैक करने के लिए, एमएल किट का इस्तेमाल किया जा सकता है.
जब आप ML Kit इमेज पास करते हैं, तो ML Kit हर इमेज के लिए, इमेज में, पता लगाए गए पांच ऑब्जेक्ट और उनकी जगह को तय किया जा सकता है. पता लगाते समय वीडियो स्ट्रीम में ऑब्जेक्ट हैं, तो हर ऑब्जेक्ट का एक आईडी होता है, जिसका उपयोग आप ऑब्जेक्ट को इमेज में डालें. आपके पास कर्स ऑब्जेक्ट को चालू करने का विकल्प भी है क्लासिफ़िकेशन, जो ऑब्जेक्ट की कैटगरी के बारे में जानकारी देने वाले बड़े पैमाने पर लेबल करता है.
शुरू करने से पहले
- अगर आपने अब तक ऐसा नहीं किया है, तो अपने Android प्रोजेक्ट में Firebase जोड़ें.
- अपने मॉड्यूल में एमएल किट Android लाइब्रेरी के लिए डिपेंडेंसी जोड़ें
(ऐप्लिकेशन-लेवल) Gradle फ़ाइल (आम तौर पर
app/build.gradle
):apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' implementation 'com.google.firebase:firebase-ml-vision-object-detection-model:19.0.6' }
1. ऑब्जेक्ट डिटेक्टर को कॉन्फ़िगर करें
ऑब्जेक्ट का पता लगाने और उन्हें ट्रैक करने के लिए, पहले एक
FirebaseVisionObjectDetector
, विकल्प के तौर पर कोई डिटेक्टर सेटिंग तय करना
डिफ़ॉल्ट से बदलना है.
अपने इस्तेमाल के उदाहरण के लिए, ऑब्जेक्ट डिटेक्टर को
FirebaseVisionObjectDetectorOptions
ऑब्जेक्ट. आपके पास इन्हें बदलने का विकल्प है सेटिंग:ऑब्जेक्ट डिटेक्टर की सेटिंग पहचान मोड STREAM_MODE
(डिफ़ॉल्ट) |SINGLE_IMAGE_MODE
STREAM_MODE
(डिफ़ॉल्ट तौर पर) में, ऑब्जेक्ट डिटेक्टर चलता है लेकिन इंतज़ार का समय कम हो, लेकिन हो सकता है कि नतीजे पूरे न हों (जैसे कि अनिर्दिष्ट बाउंडिंग बॉक्स या कैटगरी लेबल) डिटेक्टर के इस्तेमाल से जुड़ी जानकारी. साथ ही,STREAM_MODE
में, डिटेक्टर, ऑब्जेक्ट को ट्रैकिंग आईडी असाइन करता है, जिनका इस्तेमाल इन कामों के लिए किया जा सकता है अलग-अलग फ़्रेम पर ऑब्जेक्ट ट्रैक कर सकते हैं. ट्रैक करने के लिए, इस मोड का इस्तेमाल करें ऑब्जेक्ट या जब इंतज़ार का समय कम होना ज़रूरी हो, जैसे कि प्रोसेस करते समय रीयल टाइम में वीडियो स्ट्रीम करने की सुविधा मिलती है.SINGLE_IMAGE_MODE
में, ऑब्जेक्ट डिटेक्टर इंतज़ार करता है जब तक पता लगाए गए ऑब्जेक्ट के बाउंडिंग बॉक्स तक नहीं और (अगर आपने वर्गीकरण) श्रेणी लेबल नतीजा. इस वजह से, जांच में लगने वाला समय ज़्यादा हो सकता है. साथ ही,SINGLE_IMAGE_MODE
में ट्रैकिंग आईडी असाइन किया गया है. इस मोड का इस्तेमाल तब करें, जब इंतज़ार का समय खास न हो और बिना देरी हो रही हो आंशिक परिणामों से निपटना चाहते हैं.एक से ज़्यादा ऑब्जेक्ट का पता लगाएं और उन्हें ट्रैक करें false
(डिफ़ॉल्ट) |true
ज़्यादा से ज़्यादा पांच ऑब्जेक्ट या सिर्फ़ सबसे ज़्यादा ऑब्जेक्ट का पता लगाना और उन्हें ट्रैक करना है या नहीं साफ़ तौर पर दिखने वाला ऑब्जेक्ट (डिफ़ॉल्ट).
ऑब्जेक्ट को वर्गीकृत करें false
(डिफ़ॉल्ट) |true
पता लगाए गए ऑब्जेक्ट को अनुमानित कैटगरी में बांटना है या नहीं. चालू होने पर, ऑब्जेक्ट की पहचान करने वाला टूल ये कैटगरी हैं: फ़ैशन के सामान, खाना, घरेलू सामान, जगह, पौधे, और इसके बारे में कोई जानकारी नहीं है.
ऑब्जेक्ट की पहचान और ट्रैकिंग एपीआई को इन दो मुख्य इस्तेमाल के लिए ऑप्टिमाइज़ किया गया है मामले:
- कैमरे में सबसे ज़रूरी चीज़ का लाइव पता लगाना और उसे ट्रैक करना व्यूफ़ाइंडर
- किसी स्टैटिक इमेज से कई ऑब्जेक्ट का पता लगाना
एपीआई को इस्तेमाल के इन उदाहरणों के हिसाब से कॉन्फ़िगर करने के लिए:
Java
// Live detection and tracking FirebaseVisionObjectDetectorOptions options = new FirebaseVisionObjectDetectorOptions.Builder() .setDetectorMode(FirebaseVisionObjectDetectorOptions.STREAM_MODE) .enableClassification() // Optional .build(); // Multiple object detection in static images FirebaseVisionObjectDetectorOptions options = new FirebaseVisionObjectDetectorOptions.Builder() .setDetectorMode(FirebaseVisionObjectDetectorOptions.SINGLE_IMAGE_MODE) .enableMultipleObjects() .enableClassification() // Optional .build();
Kotlin+KTX
// Live detection and tracking val options = FirebaseVisionObjectDetectorOptions.Builder() .setDetectorMode(FirebaseVisionObjectDetectorOptions.STREAM_MODE) .enableClassification() // Optional .build() // Multiple object detection in static images val options = FirebaseVisionObjectDetectorOptions.Builder() .setDetectorMode(FirebaseVisionObjectDetectorOptions.SINGLE_IMAGE_MODE) .enableMultipleObjects() .enableClassification() // Optional .build()
FirebaseVisionObjectDetector
का इंस्टेंस पाएं:Java
FirebaseVisionObjectDetector objectDetector = FirebaseVision.getInstance().getOnDeviceObjectDetector(); // Or, to change the default settings: FirebaseVisionObjectDetector objectDetector = FirebaseVision.getInstance().getOnDeviceObjectDetector(options);
Kotlin+KTX
val objectDetector = FirebaseVision.getInstance().getOnDeviceObjectDetector() // Or, to change the default settings: val objectDetector = FirebaseVision.getInstance().getOnDeviceObjectDetector(options)
2. ऑब्जेक्ट डिटेक्टर चलाएं
ऑब्जेक्ट का पता लगाने और उन्हें ट्रैक करने के लिए, FirebaseVisionObjectDetector
को इमेज पास करें
का processImage()
तरीका है.
क्रम में मौजूद वीडियो के हर फ़्रेम या इमेज के लिए, यह तरीका अपनाएं:
अपनी इमेज से
FirebaseVisionImage
ऑब्जेक्ट बनाएं.-
किसी
FirebaseVisionImage
media.Image
ऑब्जेक्ट, जैसे कि किसी ऑब्जेक्ट से इमेज कैप्चर करते समय करने के लिए,media.Image
ऑब्जेक्ट को पास करें और चित्र केFirebaseVisionImage.fromMediaImage()
पर घुमाया गया.अगर आपको CameraX लाइब्रेरी,
OnImageCapturedListener
, औरImageAnalysis.Analyzer
क्लास, रोटेशन वैल्यू को कैलकुलेट करती हैं आपके लिए है, इसलिए आपको रोटेशन को सिर्फ़ एक ML किट के रूप में बदलना होगा कॉल करने से पहलेROTATION_
कॉन्सटेंटFirebaseVisionImage.fromMediaImage()
:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
अगर इमेज को घुमाने की सुविधा देने वाली कैमरा लाइब्रेरी का इस्तेमाल नहीं किया जाता है, तो डिवाइस के रोटेशन और कैमरे के ओरिएंटेशन से इसका हिसाब लगा सकता है डिवाइस में सेंसर:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
इसके बाद,
media.Image
ऑब्जेक्ट को पास करें औरFirebaseVisionImage.fromMediaImage()
का रोटेशन मान:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- किसी फ़ाइल यूआरआई से
FirebaseVisionImage
ऑब्जेक्ट बनाने के लिए, पास करें ऐप्लिकेशन का कॉन्टेक्स्ट और फ़ाइल यूआरआई कोFirebaseVisionImage.fromFilePath()
. यह तब काम आता है, जब उपयोगकर्ता को चुनने का प्रॉम्प्ट भेजने के लिए,ACTION_GET_CONTENT
इंटेंट का इस्तेमाल करें अपने गैलरी ऐप्लिकेशन से मिली इमेज शामिल करेगा.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- किसी
FirebaseVisionImage
ByteBuffer
या बाइट अरे, पहले चित्र की गणना करेंmedia.Image
इनपुट के लिए ऊपर बताए गए तरीके से रोटेशन.इसके बाद,
FirebaseVisionImageMetadata
ऑब्जेक्ट बनाएं जिसमें इमेज की ऊंचाई, चौड़ाई, कलर एन्कोडिंग फ़ॉर्मैट, और रोटेशन:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
बफ़र या अरे और मेटाडेटा ऑब्जेक्ट का इस्तेमाल करके,
FirebaseVisionImage
ऑब्जेक्ट:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- किसी
FirebaseVisionImage
Bitmap
ऑब्जेक्ट:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
ऑब्जेक्ट के ज़रिए दिखाई जाने वाली इमेज में सीधा होना चाहिए, इसके लिए किसी अतिरिक्त रोटेशन की आवश्यकता नहीं होगी.
-
processImage()
तरीके से इमेज पास करें:Java
objectDetector.processImage(image) .addOnSuccessListener( new OnSuccessListener<List<FirebaseVisionObject>>() { @Override public void onSuccess(List<FirebaseVisionObject> detectedObjects) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin+KTX
objectDetector.processImage(image) .addOnSuccessListener { detectedObjects -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
अगर
processImage()
को कॉल किया जाता है, तोFirebaseVisionObject
की सूची वह सक्सेस लिसनर को भेज दिया जाता है.हर
FirebaseVisionObject
में ये प्रॉपर्टी शामिल होती हैं:बाउंडिंग बॉक्स Rect
, जो इमेज.ट्रैकिंग आईडी वह पूर्णांक जो सभी इमेज में ऑब्जेक्ट की पहचान करता है. शून्य इन सिंगल_इमेज_मोड. कैटगरी ऑब्जेक्ट की अनुमानित कैटगरी. अगर ऑब्जेक्ट की पहचान करने वाला टूल काम नहीं करता वर्गीकरण सक्षम किया हुआ है, यह हमेशा FirebaseVisionObject.CATEGORY_UNKNOWN
.आत्मविश्वास ऑब्जेक्ट कैटगरी की कॉन्फ़िडेंस वैल्यू. अगर आपको डिटेक्टर में क्लासिफ़िकेशन चालू नहीं है या ऑब्जेक्ट अज्ञात के रूप में वर्गीकृत किया गया, तो यह null
.Java
// The list of detected objects contains one item if multiple object detection wasn't enabled. for (FirebaseVisionObject obj : detectedObjects) { Integer id = obj.getTrackingId(); Rect bounds = obj.getBoundingBox(); // If classification was enabled: int category = obj.getClassificationCategory(); Float confidence = obj.getClassificationConfidence(); }
Kotlin+KTX
// The list of detected objects contains one item if multiple object detection wasn't enabled. for (obj in detectedObjects) { val id = obj.trackingId // A number that identifies the object across images val bounds = obj.boundingBox // The object's position in the image // If classification was enabled: val category = obj.classificationCategory val confidence = obj.classificationConfidence }
उपयोगिता और परफ़ॉर्मेंस में सुधार करना
बेहतरीन उपयोगकर्ता अनुभव के लिए, अपने ऐप्लिकेशन में इन दिशा-निर्देशों का पालन करें:
- ऑब्जेक्ट की पहचान हो पाना, ऑब्जेक्ट की विज़ुअल जटिलता पर निर्भर करता है. ऑब्जेक्ट कम विज़ुअल सुविधाओं का इस्तेमाल करने पर, हो सकता है कि पहचानी जाने वाली इमेज. आपको उपयोगकर्ताओं को कैप्चर करने के लिए ऐसा इनपुट जो उन ऑब्जेक्ट के साथ अच्छे से काम करता है जिनका आपको पता लगाना है.
- क्लासिफ़िकेशन का इस्तेमाल करते समय, अगर आपको ऐसे ऑब्जेक्ट का पता लगाना है जो गिरते नहीं हैं समर्थित श्रेणियों में साफ़ तौर पर, अज्ञात के लिए विशेष हैंडलिंग लागू करें ऑब्जेक्ट हैं.
साथ ही, इसे देखें [ML Kit Material Design शोकेस ऐप्लिकेशन][showcase-link]{: .external } और मटीरियल डिज़ाइन मशीन लर्निंग से काम करने वाली सुविधाओं के पैटर्न का कलेक्शन.
रीयल-टाइम ऐप्लिकेशन में स्ट्रीमिंग मोड का इस्तेमाल करते समय, इन दिशा-निर्देशों का पालन करें बेहतरीन फ़्रेम रेट हासिल करें:
स्ट्रीमिंग मोड में एक से ज़्यादा ऑब्जेक्ट की पहचान करने की सुविधा का इस्तेमाल न करें, क्योंकि ज़्यादातर डिवाइस सही फ़्रेमरेट बना सके.
अगर आपको डेटा की कैटगरी तय करने की ज़रूरत नहीं है, तो उसे बंद कर दें.
- डिटेक्टर को कॉल थ्रॉटल करें. अगर कोई नया वीडियो फ़्रेम डिटेक्टर के चलने के दौरान उपलब्ध होने पर, फ़्रेम छोड़ें.
- अगर ग्राफ़िक को ओवरले करने के लिए, डिटेक्टर के आउटपुट का इस्तेमाल किया जा रहा है इनपुट इमेज को चुनने के बाद, पहले एमएल किट से नतीजा पाएं. इसके बाद, इमेज को रेंडर करें और ओवरले को एक ही चरण में पूरा करें. ऐसा करके, डिसप्ले सरफ़ेस पर रेंडर हो जाता है हर इनपुट फ़्रेम के लिए सिर्फ़ एक बार.
-
Camera2 API का इस्तेमाल करने पर, इमेज यहां कैप्चर करें
ImageFormat.YUV_420_888
फ़ॉर्मैट.अगर पुराने Camera API का इस्तेमाल किया जा रहा है, तो इमेज यहां कैप्चर करें
ImageFormat.NV21
फ़ॉर्मैट.