Android'de Makine Öğrenimi Kiti ile Yüzleri Algılama

Görüntü ve videolardaki yüzleri algılamak için ML Kit'i kullanabilirsiniz.

Başlamadan önce

  1. Henüz yapmadıysanız Firebase'i Android projenize ekleyin.
  2. ML Kit Android kitaplıklarının bağımlılıkları modülünüzün (uygulama düzeyinde) Gradle dosyasına (genellikle app/build.gradle) eklenmelidir:
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
      // If you want to detect face contours (landmark detection and classification
      // don't require this additional model):
      implementation 'com.google.firebase:firebase-ml-vision-face-model:20.0.1'
    }
  3. İsteğe bağlı ancak önerilir: Uygulamanız Play Store'dan yüklendikten sonra uygulamanızı, ML modelini cihaza otomatik olarak indirecek şekilde yapılandırın.

    Bunun için uygulamanızın AndroidManifest.xml dosyasına aşağıdaki beyanı ekleyin:

    <application ...>
      ...
      <meta-data
          android:name="com.google.firebase.ml.vision.DEPENDENCIES"
          android:value="face" />
      <!-- To use multiple models: android:value="face,model2,model3" -->
    </application>
    Yükleme sırasında model indirmelerini etkinleştirmezseniz model, algılayıcıyı ilk kez çalıştırdığınızda indirilir. İndirme işlemi tamamlanmadan önce gönderdiğiniz istekler sonuç vermez.

Giriş resmi kuralları

ML Kit'in yüzleri doğru şekilde algılaması için giriş resimlerinin yeterli piksel verisiyle temsil edilen yüzler içermesi gerekir. Genel olarak, bir resimde tespit etmek istediğiniz her yüz en az 100x100 piksel olmalıdır. Yüzlerin dış çizgilerini tespit etmek istiyorsanız ML Kit daha yüksek çözünürlüklü giriş gerektirir: Her yüz en az 200x200 piksel olmalıdır.

Gerçek zamanlı bir uygulamada yüz algılıyorsanız giriş resimlerinin genel boyutlarını da dikkate alabilirsiniz. Daha küçük resimler daha hızlı işlenebilir. Bu nedenle, gecikmeyi azaltmak için resimleri daha düşük çözünürlüklerde çekin (yukarıdaki doğruluk koşullarını göz önünde bulundurarak) ve öznenin yüzünün görüntünün mümkün olduğunca büyük bir kısmını kaplamasını sağlayın. Ayrıca Gerçek zamanlı performansı iyileştirmeyle ilgili ipuçları başlıklı makaleyi de inceleyin.

Resmin odaklanmaması doğruluğu olumsuz etkileyebilir. Kabul edilebilir sonuçlar elde edemiyorsanız kullanıcıdan resmi yeniden çekmesini isteyin.

Yüzün kameraya göre yönü de ML Kit'in algıladığı yüz özelliklerini etkileyebilir. Yüz Algılama Kavramları başlıklı makaleyi inceleyin.

1. Yüz algılayıcıyı yapılandırma

Bir resme yüz algılama özelliğini uygulamadan önce yüz algılayıcının varsayılan ayarlarından herhangi birini değiştirmek istiyorsanız bu ayarları bir FirebaseVisionFaceDetectorOptions nesnesi ile belirtin. Aşağıdaki ayarları değiştirebilirsiniz:

Ayarlar
Performans modu FAST (varsayılan) | ACCURATE

Yüz algılarken hıza veya doğruluğa öncelik verin.

Önemli noktaları algılama NO_LANDMARKS (varsayılan) | ALL_LANDMARKS

Yüz "landmark'larını (gözler, kulaklar, burun, yanaklar, ağız vb.) tespit etmeye çalışılıp çalışılmayacağı.

Konturları algılama NO_CONTOURS (varsayılan) | ALL_CONTOURS

Yüz özelliklerinin dış hatlarının algılanıp algılanmayacağı. Kontur, yalnızca resimdeki en belirgin yüz için algılanır.

Yüzleri sınıflandırma NO_CLASSIFICATIONS (varsayılan) | ALL_CLASSIFICATIONS

Yüzlerin "gülümsüyor" ve "gözler açık" gibi kategorilere ayrılıp ayrılmayacağı.

Minimum kadran boyutu float (varsayılan: 0.1f)

Algılanacak yüzlerin resme göre minimum boyutu.

Yüz izlemeyi etkinleştirme false (varsayılan) | true

Yüzlere, resimlerdeki yüzleri izlemek için kullanılabilecek bir kimlik atanıp atanmayacağı.

Kontur algılama etkinleştirildiğinde yalnızca bir yüzün algılandığını ve bu nedenle yüz izlemenin yararlı sonuçlar vermediğini unutmayın. Bu nedenle ve algılama hızını artırmak için hem kenar algılama hem de yüz izlemeyi etkinleştirmeyin.

Örneğin:

Java

// High-accuracy landmark detection and face classification
FirebaseVisionFaceDetectorOptions highAccuracyOpts =
        new FirebaseVisionFaceDetectorOptions.Builder()
                .setPerformanceMode(FirebaseVisionFaceDetectorOptions.ACCURATE)
                .setLandmarkMode(FirebaseVisionFaceDetectorOptions.ALL_LANDMARKS)
                .setClassificationMode(FirebaseVisionFaceDetectorOptions.ALL_CLASSIFICATIONS)
                .build();

// Real-time contour detection of multiple faces
FirebaseVisionFaceDetectorOptions realTimeOpts =
        new FirebaseVisionFaceDetectorOptions.Builder()
                .setContourMode(FirebaseVisionFaceDetectorOptions.ALL_CONTOURS)
                .build();

Kotlin

// High-accuracy landmark detection and face classification
val highAccuracyOpts = FirebaseVisionFaceDetectorOptions.Builder()
        .setPerformanceMode(FirebaseVisionFaceDetectorOptions.ACCURATE)
        .setLandmarkMode(FirebaseVisionFaceDetectorOptions.ALL_LANDMARKS)
        .setClassificationMode(FirebaseVisionFaceDetectorOptions.ALL_CLASSIFICATIONS)
        .build()

// Real-time contour detection of multiple faces
val realTimeOpts = FirebaseVisionFaceDetectorOptions.Builder()
        .setContourMode(FirebaseVisionFaceDetectorOptions.ALL_CONTOURS)
        .build()

2. Yüz algılayıcıyı çalıştırma

Bir resimdeki yüzleri algılamak için cihazdaki bir Bitmap, media.Image, ByteBuffer, bayt dizisi veya dosyadan FirebaseVisionImage nesnesi oluşturun. Ardından FirebaseVisionImage nesnesini FirebaseVisionFaceDetector nesnesinin detectInImage yöntemine iletin.

Yüz tanıma için en az 480x360 piksel boyutunda bir resim kullanmanız gerekir. Yüzleri gerçek zamanlı olarak tanımanız gerekiyorsa kareleri bu minimum çözünürlükte yakalamak gecikmeyi azaltmanıza yardımcı olabilir.

  1. Resminizden bir FirebaseVisionImage nesnesi oluşturun.

    • Bir media.Image nesnesinden FirebaseVisionImage nesnesi oluşturmak için (ör. bir cihazın kamerasından resim çekerken) media.Image nesnesini ve resmin dönme açısını FirebaseVisionImage.fromMediaImage()'ye iletin.

      CameraX kitaplığını kullanıyorsanız OnImageCapturedListener ve ImageAnalysis.Analyzer sınıfları rotasyon değerini sizin için hesaplar. Bu nedenle, FirebaseVisionImage.fromMediaImage() işlevini çağırmadan önce rotasyonu ML Kit'in ROTATION_ sabitlerinden birine dönüştürmeniz yeterlidir:

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }

      Kotlin

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }

      Resmin dönme açısını gösteren bir kamera kitaplığı kullanmıyorsanız bunu cihazın dönme açısını ve cihazdaki kamera sensörünün yönünü kullanarak hesaplayabilirsiniz:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Ardından, media.Image nesnesini ve dönüş değerini FirebaseVisionImage.fromMediaImage()'e gönderin:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • Dosya URI'sinden FirebaseVisionImage nesnesi oluşturmak için uygulama bağlamını ve dosya URI'sini FirebaseVisionImage.fromFilePath()'a iletin. Bu, kullanıcıdan galeri uygulamasından bir resim seçmesini istemek için ACTION_GET_CONTENT intent'i kullandığınızda kullanışlıdır.

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • Bir ByteBuffer veya bayt dizisinden FirebaseVisionImage nesnesi oluşturmak için önce, media.Image girişi için yukarıda açıklandığı şekilde resim rotasyonunu hesaplayın.

      Ardından, resmin yüksekliğini, genişliğini, renk kodlama biçimini ve döndürülmüş durumunu içeren bir FirebaseVisionImageMetadata nesnesi oluşturun:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      FirebaseVisionImage nesnesi oluşturmak için arabellek veya diziyi ve meta veri nesnesini kullanın:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • Bitmap nesnesinden FirebaseVisionImage nesnesi oluşturmak için:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      Bitmap nesnesi tarafından temsil edilen resim dik olmalıdır ve ek döndürme işlemi gerekmemelidir.
  2. FirebaseVisionFaceDetector örneğini alın:

    Java

    FirebaseVisionFaceDetector detector = FirebaseVision.getInstance()
            .getVisionFaceDetector(options);

    Kotlin

    val detector = FirebaseVision.getInstance()
            .getVisionFaceDetector(options)
  3. Son olarak, resmi detectInImage yöntemine iletin:

    Java

    Task<List<FirebaseVisionFace>> result =
            detector.detectInImage(image)
                    .addOnSuccessListener(
                            new OnSuccessListener<List<FirebaseVisionFace>>() {
                                @Override
                                public void onSuccess(List<FirebaseVisionFace> faces) {
                                    // Task completed successfully
                                    // ...
                                }
                            })
                    .addOnFailureListener(
                            new OnFailureListener() {
                                @Override
                                public void onFailure(@NonNull Exception e) {
                                    // Task failed with an exception
                                    // ...
                                }
                            });

    Kotlin

    val result = detector.detectInImage(image)
            .addOnSuccessListener { faces ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener { e ->
                // Task failed with an exception
                // ...
            }

3. Algılanan yüzler hakkında bilgi edinme

Yüz tanıma işlemi başarılı olursa başarı dinleyicisine FirebaseVisionFace nesnelerinin listesi iletilir. Her FirebaseVisionFace nesnesi, resimde algılanan bir yüzü temsil eder. Her yüz için giriş resmindeki sınırlayıcı koordinatlarını ve yüz algılayıcıyı bulması için yapılandırdığınız diğer bilgileri alabilirsiniz. Örneğin:

Java

for (FirebaseVisionFace face : faces) {
    Rect bounds = face.getBoundingBox();
    float rotY = face.getHeadEulerAngleY();  // Head is rotated to the right rotY degrees
    float rotZ = face.getHeadEulerAngleZ();  // Head is tilted sideways rotZ degrees

    // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
    // nose available):
    FirebaseVisionFaceLandmark leftEar = face.getLandmark(FirebaseVisionFaceLandmark.LEFT_EAR);
    if (leftEar != null) {
        FirebaseVisionPoint leftEarPos = leftEar.getPosition();
    }

    // If contour detection was enabled:
    List<FirebaseVisionPoint> leftEyeContour =
            face.getContour(FirebaseVisionFaceContour.LEFT_EYE).getPoints();
    List<FirebaseVisionPoint> upperLipBottomContour =
            face.getContour(FirebaseVisionFaceContour.UPPER_LIP_BOTTOM).getPoints();

    // If classification was enabled:
    if (face.getSmilingProbability() != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) {
        float smileProb = face.getSmilingProbability();
    }
    if (face.getRightEyeOpenProbability() != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) {
        float rightEyeOpenProb = face.getRightEyeOpenProbability();
    }

    // If face tracking was enabled:
    if (face.getTrackingId() != FirebaseVisionFace.INVALID_ID) {
        int id = face.getTrackingId();
    }
}

Kotlin

for (face in faces) {
    val bounds = face.boundingBox
    val rotY = face.headEulerAngleY // Head is rotated to the right rotY degrees
    val rotZ = face.headEulerAngleZ // Head is tilted sideways rotZ degrees

    // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
    // nose available):
    val leftEar = face.getLandmark(FirebaseVisionFaceLandmark.LEFT_EAR)
    leftEar?.let {
        val leftEarPos = leftEar.position
    }

    // If contour detection was enabled:
    val leftEyeContour = face.getContour(FirebaseVisionFaceContour.LEFT_EYE).points
    val upperLipBottomContour = face.getContour(FirebaseVisionFaceContour.UPPER_LIP_BOTTOM).points

    // If classification was enabled:
    if (face.smilingProbability != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) {
        val smileProb = face.smilingProbability
    }
    if (face.rightEyeOpenProbability != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) {
        val rightEyeOpenProb = face.rightEyeOpenProbability
    }

    // If face tracking was enabled:
    if (face.trackingId != FirebaseVisionFace.INVALID_ID) {
        val id = face.trackingId
    }
}

Yüz kontürleri örneği

Yüz konturu algılama özelliğini etkinleştirdiğinizde, algılanan her yüz özelliğinin nokta listesini alırsınız. Bu noktalar, özelliğin şeklini temsil eder. Konturların nasıl temsil edildiğiyle ilgili ayrıntılar için Yüz Algılama Kavramlarına Genel Bakış başlıklı makaleyi inceleyin.

Aşağıdaki resimde bu noktaların bir yüzle nasıl eşlendiği gösterilmektedir (büyütmek için resmi tıklayın):

Gerçek zamanlı yüz algılama

Yüz algılamayı gerçek zamanlı bir uygulamada kullanmak istiyorsanız en iyi kare hızlarına ulaşmak için aşağıdaki yönergeleri uygulayın:

  • Yüz algılayıcıyı, yüz konturu algılama veya sınıflandırma ve yer işareti algılama özelliklerinden birini (ikisini birden değil) kullanacak şekilde yapılandırın:

    Kontur algılama
    Önemli nokta algılama
    Sınıflandırma
    Önemli nokta algılama ve sınıflandırma
    Kontur algılama ve önemli nokta algılama
    Kontur algılama ve sınıflandırma
    Kontur algılama, önemli nokta algılama ve sınıflandırma

  • FAST modunu etkinleştirin (varsayılan olarak etkindir).

  • Resimleri daha düşük çözünürlükte çekmeyi deneyin. Ancak bu API'nin resim boyutu koşullarını da göz önünde bulundurun.

  • Dedektöre yapılan çağrıları azaltın. Algılayıcı çalışırken yeni bir video karesi kullanılabilir hale gelirse kareyi bırakın.
  • Giriş resmine grafik yerleştirmek için algılayıcının çıkışını kullanıyorsanız önce ML Kit'ten sonucu alın, ardından resmi ve yer paylaşımını tek bir adımda oluşturun. Böylece, her giriş çerçevesi için ekran yüzeyinde yalnızca bir kez oluşturma işlemi gerçekleştirirsiniz.
  • Camera2 API'yi kullanıyorsanız resimleri ImageFormat.YUV_420_888 biçiminde kaydedin.

    Eski Camera API'yi kullanıyorsanız resimleri ImageFormat.NV21 biçiminde çekin.