במדריך הזה נסביר על כמה מהמושגים המרכזיים בארכיטקטורת נתונים ועל השיטות המומלצות ליצירת מבנה לנתוני ה-JSON ב-Firebase Realtime Database.
כדי לבנות מסד נתונים במבנה תקין, נדרש לא מעט מחשבה. והכי חשוב, צריך לתכנן איך הנתונים יישמרו ויוחזרו מאוחר יותר כדי שהתהליך יהיה קל ככל האפשר.
מבנה הנתונים: עץ JSON
כל הנתונים של Firebase Realtime Database מאוחסנים כאובייקטים של JSON. אפשר לחשוב על מסד הנתונים כעץ JSON שמתארח בענן. בניגוד למסד נתונים של SQL, אין בו טבלאות או רשומות. כשמוסיפים נתונים לעץ ה-JSON, הם הופכים לצומת במבנה ה-JSON הקיים עם מפתח משויך. אתם יכולים לספק מפתחות משלכם, כמו מזהי משתמשים או שמות סמנטיים, או שהם יכולים להימסר לכם באמצעות השיטה push()
.
אם אתם יוצרים מפתחות משלכם, הם חייבים להיות בקידוד UTF-8, באורך של עד 768 בייטים ולא יכולים להכיל את התווים .
, $
, #
, [
, ]
, /
או תווים רגולטוריים של ASCII בטווח 0-31 או 127. אי אפשר להשתמש גם בתווי בקרה מסוג ASCII בערכים עצמם.
לדוגמה, אפליקציית צ'אט שמאפשרת למשתמשים לשמור פרופיל בסיסי ורשימת אנשי קשר. פרופיל משתמש אופייני נמצא בנתיב, למשל /users/$uid
. יכול להיות שלמשתמש alovelace
תהיה רשומה במסד הנתונים שנראית בערך כך:
{ "users": { "alovelace": { "name": "Ada Lovelace", "contacts": { "ghopper": true }, }, "ghopper": { ... }, "eclarke": { ... } } }
למרות שבמסד הנתונים נעשה שימוש בעץ JSON, אפשר לייצג את הנתונים שמאוחסנים במסד הנתונים כסוגי נתונים מקומיים מסוימים שתואמים לסוגים הזמינים של JSON, כדי לעזור לכם לכתוב קוד שקל יותר לתחזק.
שיטות מומלצות למבנה הנתונים
הימנעות מהצבת נתונים בתצוגת עץ
מכיוון ש-Firebase Realtime Database מאפשר להטמיע נתונים עד 32 רמות עומק, יכול להיות שתתפתו לחשוב שזה צריך להיות המבנה שמוגדר כברירת מחדל. עם זאת, כשאוחזרים נתונים במיקום במסד הנתונים, אוחזרים גם כל צמת הילדים שלו. בנוסף, כשנותנים למישהו הרשאת קריאה או הרשאת כתיבה בצומת במסד הנתונים, נותנים לו גם גישה לכל הנתונים שבאותו צומת. לכן, בפועל, עדיף לשמור על מבנה נתונים שטוח ככל האפשר.
כדי להבין למה נתונים בתצוגת עץ הם לא טובים, נבחן את המבנה הבא עם כמה רמות עץ:
{ // This is a poorly nested data architecture, because iterating the children // of the "chats" node to get a list of conversation titles requires // potentially downloading hundreds of megabytes of messages "chats": { "one": { "title": "Historical Tech Pioneers", "messages": { "m1": { "sender": "ghopper", "message": "Relay malfunction found. Cause: moth." }, "m2": { ... }, // a very long list of messages } }, "two": { ... } } }
בעיצוב הזה, חזרה על הנתונים הופכת לבעייתית. לדוגמה, כדי להציג ללקוח את השמות של שיחות הצ'אט, צריך להוריד ללקוח את עץ chats
כולו, כולל כל החברים וההודעות.
יישור מבני נתונים
אם הנתונים מחולקים לנתיבים נפרדים, שנקראים גם דה-נורמליזציה, אפשר להוריד אותם ביעילות בשיחות נפרדות, לפי הצורך. קחו לדוגמה את המבנה האשורי הבא:
{ // Chats contains only meta info about each conversation // stored under the chats's unique ID "chats": { "one": { "title": "Historical Tech Pioneers", "lastMessage": "ghopper: Relay malfunction found. Cause: moth.", "timestamp": 1459361875666 }, "two": { ... }, "three": { ... } }, // Conversation members are easily accessible // and stored by chat conversation ID "members": { // we'll talk about indices like this below "one": { "ghopper": true, "alovelace": true, "eclarke": true }, "two": { ... }, "three": { ... } }, // Messages are separate from data we may want to iterate quickly // but still easily paginated and queried, and organized by chat // conversation ID "messages": { "one": { "m1": { "name": "eclarke", "message": "The relay seems to be malfunctioning.", "timestamp": 1459361875337 }, "m2": { ... }, "m3": { ... } }, "two": { ... }, "three": { ... } } }
עכשיו אפשר לעבור על רשימת החדרים על ידי הורדה של כמה בייטים לכל שיחה, כדי לאחזר במהירות מטא-נתונים לצורך הצגת החדרים ברשימה או בממשק המשתמש. ניתן לאחזר את ההודעות בנפרד ולהציג אותן ברגע שהן מגיעות, וכך ממשק המשתמש ממשיך להגיב במהירות.
יצירת נתונים שניתן להתאים לעומס
כשמפתחים אפליקציות, לרוב עדיף להוריד קבוצת משנה של רשימה. המצב הזה נפוץ במיוחד אם הרשימה מכילה אלפי רשומות. כשהקשר הזה סטטי ופונה בכיוון אחד, אפשר פשוט להטמיע את אובייקטי הצאצא מתחת לאובייקט ההורה.
לפעמים הקשר הזה הוא דינמי יותר, או שצריך לבטל את הנירמול של הנתונים האלה. לעיתים קרובות אפשר לבטל את נורמליזציית הנתונים באמצעות שאילתה לאחזור קבוצת משנה של הנתונים, כפי שמתואר בקטע אחזור נתונים.
אבל גם זה לא מספיק. לדוגמה, נניח שיש קשר דו-כיווני בין משתמשים לקבוצות. משתמשים יכולים להשתייך לקבוצה, וקבוצות מורכבות מרשימת משתמשים. כשמגיע הזמן להחליט לאילו קבוצות משתמש מסוים שייך, העניינים מסתבכים.
מה שדרוש הוא דרך אלגנטית לרשום את הקבוצות שהמשתמש שייך אליהן ולשלוף רק נתונים לגבי הקבוצות האלה. אינדקס של קבוצות יכול לעזור לעסקה מצוינת כאן:
// An index to track Ada's memberships { "users": { "alovelace": { "name": "Ada Lovelace", // Index Ada's groups in her profile "groups": { // the value here doesn't matter, just that the key exists "techpioneers": true, "womentechmakers": true } }, ... }, "groups": { "techpioneers": { "name": "Historical Tech Pioneers", "members": { "alovelace": true, "ghopper": true, "eclarke": true } }, ... } }
יכול להיות שתבחינו שחלק מהנתונים כפולים, כי המערכת שומרת את הקשר גם ברשומה של Ada וגם בקבוצה. עכשיו הדף alovelace
נוסף לאינדקס בקבוצה, והדף techpioneers
מופיע בפרופיל של Ada. לכן, כדי למחוק את Ada מהקבוצה, צריך לעדכן אותה בשני מקומות.
זוהי יתירות הכרחית ליחסים דו-כיווניים. הוא מאפשר לאחזר במהירות וביעילות את החברויות של Ada, גם כשרשימת המשתמשים או הקבוצות מונה מיליוני רשומות או כשכללי האבטחה של Realtime Database מונעים גישה לחלק מהרשומות.
בגישה הזו, אפשר להפוך את הנתונים על ידי רישום המזהים כמפתחות והגדרת הערך ל-TRUE, כך שאפשר לחפש מפתח בקלות כמו /users/$uid/groups/$group_id
ולבדוק אם הוא null
. האינדקס מהיר יותר ויעיל הרבה יותר מאשר שליחת שאילתות או סריקה של הנתונים.