本頁面提供範例,說明如何使用 Dataflow 在 Apache Beam 管道中執行大量 Cloud Firestore 作業。Apache Beam 支援 Cloud Firestore 的連接器。您可以使用這個連接器在 Dataflow 中執行批次和串流作業。
建議您使用 Dataflow 和 Apache Beam 處理大規模資料處理工作負載。
Java 中提供 Apache Beam 的 Cloud Firestore 連接器。如要進一步瞭解 Cloud Firestore 連接器,請參閱 Java 適用的 Apache Beam SDK。
事前準備
閱讀本頁面之前,請先熟悉 Apache Beam 的程式設計模型。
如要執行範例,您必須啟用 Dataflow API。範例 Cloud Firestore 管道
以下範例示範寫入資料的管道,以及讀取及篩選資料的管道。您可以使用這些範例,做為自己管道的起點。
執行範例管道
您可以在 googleapis/java-firestore GitHub 存放區中取得範例的原始碼。如要執行這些範例,請下載原始碼並查看「README」。
範例 Write
管道
以下範例會在 cities-beam-sample
集合中建立文件:
public class ExampleFirestoreBeamWrite { private static final FirestoreOptions FIRESTORE_OPTIONS = FirestoreOptions.getDefaultInstance(); public static void main(String[] args) { runWrite(args, "cities-beam-sample"); } public static void runWrite(String[] args, String collectionId) { // create pipeline options from the passed in arguments PipelineOptions options = PipelineOptionsFactory.fromArgs(args).withValidation().as(PipelineOptions.class); Pipeline pipeline = Pipeline.create(options); RpcQosOptions rpcQosOptions = RpcQosOptions.newBuilder() .withHintMaxNumWorkers(options.as(DataflowPipelineOptions.class).getMaxNumWorkers()) .build(); // create some writes Write write1 = Write.newBuilder() .setUpdate( Document.newBuilder() // resolves to // projects/<projectId>/databases/<databaseId>/documents/<collectionId>/NYC .setName(createDocumentName(collectionId, "NYC")) .putFields("name", Value.newBuilder().setStringValue("New York City").build()) .putFields("state", Value.newBuilder().setStringValue("New York").build()) .putFields("country", Value.newBuilder().setStringValue("USA").build())) .build(); Write write2 = Write.newBuilder() .setUpdate( Document.newBuilder() // resolves to // projects/<projectId>/databases/<databaseId>/documents/<collectionId>/TOK .setName(createDocumentName(collectionId, "TOK")) .putFields("name", Value.newBuilder().setStringValue("Tokyo").build()) .putFields("country", Value.newBuilder().setStringValue("Japan").build()) .putFields("capital", Value.newBuilder().setBooleanValue(true).build())) .build(); // batch write the data pipeline .apply(Create.of(write1, write2)) .apply(FirestoreIO.v1().write().batchWrite().withRpcQosOptions(rpcQosOptions).build()); // run the pipeline pipeline.run().waitUntilFinish(); } private static String createDocumentName(String collectionId, String cityDocId) { String documentPath = String.format( "projects/%s/databases/%s/documents", FIRESTORE_OPTIONS.getProjectId(), FIRESTORE_OPTIONS.getDatabaseId()); return documentPath + "/" + collectionId + "/" + cityDocId; } }
這個範例使用以下引數設定及執行管道:
GOOGLE_CLOUD_PROJECT=project-id REGION=region TEMP_LOCATION=gs://temp-bucket/temp/ NUM_WORKERS=number-workers MAX_NUM_WORKERS=max-number-workers
範例 Read
管道
以下管道範例會讀取 cities-beam-sample
集合的文件,並針對欄位 country
設為 USA
的文件套用篩選器,然後傳回符合條件的文件名稱。
public class ExampleFirestoreBeamRead { public static void main(String[] args) { runRead(args, "cities-beam-sample"); } public static void runRead(String[] args, String collectionId) { FirestoreOptions firestoreOptions = FirestoreOptions.getDefaultInstance(); PipelineOptions options = PipelineOptionsFactory.fromArgs(args).withValidation().as(PipelineOptions.class); Pipeline pipeline = Pipeline.create(options); RpcQosOptions rpcQosOptions = RpcQosOptions.newBuilder() .withHintMaxNumWorkers(options.as(DataflowPipelineOptions.class).getMaxNumWorkers()) .build(); pipeline .apply(Create.of(collectionId)) .apply( new FilterDocumentsQuery( firestoreOptions.getProjectId(), firestoreOptions.getDatabaseId())) .apply(FirestoreIO.v1().read().runQuery().withRpcQosOptions(rpcQosOptions).build()) .apply( ParDo.of( // transform each document to its name new DoFn<RunQueryResponse, String>() { @ProcessElement public void processElement(ProcessContext c) { c.output(Objects.requireNonNull(c.element()).getDocument().getName()); } })) .apply( ParDo.of( // print the document name new DoFn<String, Void>() { @ProcessElement public void processElement(ProcessContext c) { System.out.println(c.element()); } })); pipeline.run().waitUntilFinish(); } private static final class FilterDocumentsQuery extends PTransform<PCollection<String>, PCollection<RunQueryRequest>> { private final String projectId; private final String databaseId; public FilterDocumentsQuery(String projectId, String databaseId) { this.projectId = projectId; this.databaseId = databaseId; } @Override public PCollection<RunQueryRequest> expand(PCollection<String> input) { return input.apply( ParDo.of( new DoFn<String, RunQueryRequest>() { @ProcessElement public void processElement(ProcessContext c) { // select from collection "cities-collection-<uuid>" StructuredQuery.CollectionSelector collection = StructuredQuery.CollectionSelector.newBuilder() .setCollectionId(Objects.requireNonNull(c.element())) .build(); // filter where country is equal to USA StructuredQuery.Filter countryFilter = StructuredQuery.Filter.newBuilder() .setFieldFilter( StructuredQuery.FieldFilter.newBuilder() .setField( StructuredQuery.FieldReference.newBuilder() .setFieldPath("country") .build()) .setValue(Value.newBuilder().setStringValue("USA").build()) .setOp(StructuredQuery.FieldFilter.Operator.EQUAL)) .buildPartial(); RunQueryRequest runQueryRequest = RunQueryRequest.newBuilder() .setParent(DocumentRootName.format(projectId, databaseId)) .setStructuredQuery( StructuredQuery.newBuilder() .addFrom(collection) .setWhere(countryFilter) .build()) .build(); c.output(runQueryRequest); } })); } } }
這個範例使用以下引數設定及執行管道:
GOOGLE_CLOUD_PROJECT=project-id REGION=region TEMP_LOCATION=gs://temp-bucket/temp/ NUM_WORKERS=number-workers MAX_NUM_WORKERS=max-number-workers
定價
在 Dataflow 中執行 Cloud Firestore 工作負載時,會產生 Cloud Firestore 用量和 Dataflow 用量的費用。系統會針對工作使用的資源收取 Dataflow 使用費。詳情請參閱 Dataflow 定價頁面。如需瞭解 Cloud Firestore 的定價,請參閱定價頁面。
後續步驟
- 如需其他管道範例,請參閱「使用 Firestore 和 Apache Beam 處理資料」。
- 如要進一步瞭解 Dataflow 和 Apache Beam,請參閱 Dataflow 說明文件。