The Chroma plugin provides indexer and retriever implementations that use the Chroma vector database in client/server mode.
Installation
npm i --save genkitx-chromadb
Configuration
To use this plugin, specify it when you initialize Genkit:
import { genkit } from 'genkit';
import { chroma } from 'genkitx-chromadb';
const ai = genkit({
plugins: [
chroma([
{
collectionName: 'bob_collection',
embedder: textEmbedding004,
},
]),
],
});
You must specify a Chroma collection and the embedding model you want to use. In addition, there are two optional parameters:
clientParams
: If you're not running your Chroma server on the same machine as your Genkit flow, you need to specify auth options, or you're otherwise not running a default Chroma server configuration, you can specify a ChromaChromaClientParams object
to pass to the Chroma client:clientParams: { path: "http://192.168.10.42:8000", }
embedderOptions
: Use this parameter to pass options to the embedder:embedderOptions: { taskType: 'RETRIEVAL_DOCUMENT' },
Usage
Import retriever and indexer references like so:
import { chromaRetrieverRef } from 'genkitx-chromadb';
import { chromaIndexerRef } from 'genkitx-chromadb';
Then, use the references with ai.retrieve()
and ai.index()
:
// To use the index you configured when you loaded the plugin:
let docs = await ai.retrieve({ retriever: chromaRetrieverRef, query });
// To specify an index:
export const bobFactsRetriever = chromaRetrieverRef({
collectionName: 'bob-facts',
});
docs = await ai.retrieve({ retriever: bobFactsRetriever, query });
// To use the index you configured when you loaded the plugin:
await ai.index({ indexer: chromaIndexerRef, documents });
// To specify an index:
export const bobFactsIndexer = chromaIndexerRef({
collectionName: 'bob-facts',
});
await ai.index({ indexer: bobFactsIndexer, documents });
See the Retrieval-augmented generation page for a general discussion on indexers and retrievers.