Vertex AI in Firebase SDK を使用してアプリから Gemini API を呼び出すときに、テキストのみの入力に基づいてテキストを生成するように Gemini モデルにプロンプトを出すことができます。
Gemini API を操作するためのその他のオプション
必要に応じて、Gemini API の代替の「Google AI」バージョンをテストします。
Google AI Studio と Google AI クライアント SDK を使用して、(上限内で、利用可能な場合)無料アクセスを取得します。これらの SDK は、モバイルアプリとウェブアプリのプロトタイピングのみに使用してください。Gemini API の仕組みに慣れたら、Vertex AI in Firebase SDK に移行(このドキュメント)します。Vertex AI in Firebase SDK には、Firebase App Check を使用した API の不正使用からの保護や、リクエスト内の大規模なメディア ファイルのサポートなど、モバイルアプリとウェブアプリに重要な多くの追加機能が含まれています。
必要に応じて、Vertex AI Gemini API サーバーサイドを呼び出す(Python、Node.js、Go など)
サーバーサイド Vertex AI SDK、Genkit、または Firebase Extensions Gemini API を使用します。
始める前に
まだ行っていない場合は、スタートガイドを完了してください。Firebase プロジェクトの設定、アプリの Firebase への接続、SDK の追加、Vertex AI サービスの初期化、GenerativeModel
インスタンスの作成方法が記載されています。
テキストのみの入力からテキストを生成する
テキストのみを含む入力で Gemini API を呼び出すことができます。これらの呼び出しでは、テキストのみのプロンプト(Gemini 2.0 Flash など)をサポートするモデルを使用する必要があります。
レスポンスをストリーミングする(generateContentStream
)か、結果全体が生成されるまでレスポンスを待機する(generateContent
)かを選択します。
モデル生成の結果全体を待たずに、ストリーミングを使用して部分的な結果を処理することで、インタラクションを高速化できます。
この例では、generateContentStream
を使用して、テキストのみを含むプロンプト リクエストから生成されたテキストをストリーミングする方法を示します。
import FirebaseVertexAI
// Initialize the Vertex AI service
let vertex = VertexAI.vertexAI()
// Create a `GenerativeModel` instance with a model that supports your use case
let model = vertex.generativeModel(modelName: "gemini-2.0-flash")
// Provide a prompt that contains text
let prompt = "Write a story about a magic backpack."
// To stream generated text output, call generateContentStream with the text input
let contentStream = try model.generateContentStream(prompt)
for try await chunk in contentStream {
if let text = chunk.text {
print(text)
}
}
または、ストリーミングではなく結果全体が返されるのを待つこともできます。結果は、モデルが生成プロセス全体を完了した後にのみ返されます。
この例は、generateContent
を使用して、テキストのみを含むプロンプト リクエストからテキストを生成する方法を示しています。
import FirebaseVertexAI
// Initialize the Vertex AI service
let vertex = VertexAI.vertexAI()
// Create a `GenerativeModel` instance with a model that supports your use case
let model = vertex.generativeModel(modelName: "gemini-2.0-flash")
// Provide a prompt that contains text
let prompt = "Write a story about a magic backpack."
// To generate text output, call generateContent with the text input
let response = try await model.generateContent(prompt)
print(response.text ?? "No text in response.")
ユースケースとアプリに適したモデルと、必要に応じてロケーションを選択する方法を学びます。
Google アシスタントの機能
- 長いプロンプトをモデルに送信する前に、トークンをカウントする方法を学びます。
- 本番環境の準備を検討します。たとえば、不正なクライアントによる Gemini API の不正使用を防ぐために Firebase App Check を設定するなどです。また、本番環境チェックリストも必ずご確認ください。
その他の機能を試す
- マルチターンの会話(チャット)を構築します。
- マルチモーダル プロンプト(テキスト、画像、PDF、動画、音声など)からテキストを生成します。
- テキストとマルチモーダル プロンプトの両方から構造化出力(JSON など)を生成します。
- テキスト プロンプトから画像を生成する。
- 関数呼び出しを使用して、生成モデルを外部システムと情報に接続します。
コンテンツ生成を制御する方法
- プロンプト設計を理解する。ベスト プラクティス、戦略、プロンプトの例などをご覧ください。
- 温度や最大出力トークン(Gemini の場合)やアスペクト比と人物生成(Imagen の場合)など、モデル パラメータを構成します。
- 安全性設定を使用すると、有害と見なされる可能性のある回答が生成される可能性を調整できます。
サポートされているモデルの詳細
さまざまなユースケースで利用可能なモデルと、その割り当てと料金について学びます。Vertex AI in Firebase の使用感に関するフィードバックを送信する