在您使用 AutoML Vision Edge 训练自己的模型后,就可以在应用中用它给图片加标签。
您可以通过以下两种方式集成通过 AutoML Vision Edge 训练的模型。您可以将模型的文件复制到 Xcode 项目以捆绑该模型,也可以从 Firebase 动态下载该模型。
模型捆绑选项 | |
---|---|
在您的应用中捆绑 |
|
使用 Firebase 进行托管 |
|
准备工作
在 Podfile 中添加机器学习套件库:
如需将模型与您的应用捆绑在一起,请执行以下操作:
pod 'GoogleMLKit/ImageLabelingCustom'
如需从 Firebase 动态下载模型,请添加
LinkFirebase
依赖项:pod 'GoogleMLKit/ImageLabelingCustom' pod 'GoogleMLKit/LinkFirebase'
安装或更新项目的 Pod 之后,请使用 Xcode 项目的
.xcworkspace
来打开项目。Xcode 12.2 版或更高版本支持机器学习套件。如果您想下载模型,请务必将 Firebase 添加到您的 Android 项目(如果尚未添加)。捆绑模型时不需要这样做。
1. 加载模型
配置本地模型来源
如需将模型与您的应用捆绑在一起,请执行以下操作:
将模型及其元数据自您从 Firebase 控制台下载的 zip 归档文件解压缩到一个文件夹:
your_model_directory |____dict.txt |____manifest.json |____model.tflite
所有这三个文件必须位于同一文件夹中。我们建议您依所下载文件原样使用这些文件,不要修改(包括文件名)。
将文件夹复制到 Xcode 项目,并在执行此操作时注意选中 Create folder references。模型文件和元数据将包含在应用软件包中,并提供给机器学习套件使用。
创建一个
LocalModel
对象,指定模型清单文件的路径:Swift
guard let manifestPath = Bundle.main.path( forResource: "manifest", ofType: "json", inDirectory: "your_model_directory" ) else { return true } let localModel = LocalModel(manifestPath: manifestPath)
Objective-C
NSString *manifestPath = [NSBundle.mainBundle pathForResource:@"manifest" ofType:@"json" inDirectory:@"your_model_directory"]; MLKLocalModel *localModel = [[MLKLocalModel alloc] initWithManifestPath:manifestPath];
配置 Firebase 托管的模型来源
如需使用远程托管的模型,请创建一个 CustomRemoteModel
对象,指定您在发布该模型时分配给模型的名称:
Swift
// Initialize the model source with the name you assigned in
// the Firebase console.
let remoteModelSource = FirebaseModelSource(name: "your_remote_model")
let remoteModel = CustomRemoteModel(remoteModelSource: remoteModelSource)
Objective-C
// Initialize the model source with the name you assigned in
// the Firebase console.
MLKFirebaseModelSource *firebaseModelSource =
[[MLKFirebaseModelSource alloc] initWithName:@"your_remote_model"];
MLKCustomRemoteModel *remoteModel =
[[MLKCustomRemoteModel alloc] initWithRemoteModelSource:firebaseModelSource];
然后,启动模型下载任务,指定您希望允许下载的条件。如果模型不在设备上,或模型有较新的版本,则任务将从 Firebase 异步下载模型:
Swift
let downloadConditions = ModelDownloadConditions(
allowsCellularAccess: true,
allowsBackgroundDownloading: true
)
let downloadProgress = ModelManager.modelManager().download(
remoteModel,
conditions: downloadConditions
)
Objective-C
MLKModelDownloadConditions *downloadConditions =
[[MLKModelDownloadConditions alloc] initWithAllowsCellularAccess:YES
allowsBackgroundDownloading:YES];
NSProgress *downloadProgress =
[[MLKModelManager modelManager] downloadRemoteModel:remoteModel
conditions:downloadConditions];
许多应用会通过其初始化代码启动下载任务,但您可以在需要使用该模型之前随时启动下载任务。
根据模型创建图片标记器
配置模型来源后,根据其中一个模型创建 ImageLabeler
对象。
如果您只有本地捆绑的模型,只需根据您的 LocalModel
对象创建一个标记器,然后配置您需要的置信度得分阈值(请参阅评估您的模型):
Swift
let options = CustomImageLabelerOptions(localModel: localModel)
options.confidenceThreshold = NSNumber(value: 0.0) // Evaluate your model in the Cloud console
// to determine an appropriate value.
let imageLabeler = ImageLabeler.imageLabeler(options)
Objective-C
CustomImageLabelerOptions *options =
[[CustomImageLabelerOptions alloc] initWithLocalModel:localModel];
options.confidenceThreshold = @(0.0f); // Evaluate your model in the Cloud console
// to determine an appropriate value.
MLKImageLabeler *imageLabeler =
[MLKImageLabeler imageLabelerWithOptions:options];
如果您使用的是远程托管的模型,则必须在运行之前检查该模型是否已下载。您可以使用模型管理器的 isModelDownloaded(remoteModel:)
方法检查模型下载任务的状态。
虽然您只需在运行标记器之前确认这一点,但如果您同时拥有远程托管模型和本地捆绑模型,则可能需要在实例化 ImageLabeler
时执行此项检查:如果已下载,则根据远程模型创建标记器,否则根据本地模型进行创建。
Swift
var options: CustomImageLabelerOptions
if (ModelManager.modelManager().isModelDownloaded(remoteModel)) {
options = CustomImageLabelerOptions(remoteModel: remoteModel)
} else {
options = CustomImageLabelerOptions(localModel: localModel)
}
options.confidenceThreshold = NSNumber(value: 0.0) // Evaluate your model in the Firebase console
// to determine an appropriate value.
let imageLabeler = ImageLabeler.imageLabeler(options: options)
Objective-C
MLKCustomImageLabelerOptions *options;
if ([[MLKModelManager modelManager] isModelDownloaded:remoteModel]) {
options = [[MLKCustomImageLabelerOptions alloc] initWithRemoteModel:remoteModel];
} else {
options = [[MLKCustomImageLabelerOptions alloc] initWithLocalModel:localModel];
}
options.confidenceThreshold = @(0.0f); // Evaluate your model in the Firebase console
// to determine an appropriate value.
MLKImageLabeler *imageLabeler =
[MLKImageLabeler imageLabelerWithOptions:options];
如果您只有远程托管的模型,则应停用与模型相关的功能(例如灰显或隐藏部分界面),直到您确认模型已下载。
您可以将观察者附加到默认通知中心,以获取模型下载状态。请务必在观察者块中使用对 self
的弱引用,因为下载可能需要一些时间,并且源对象可能到下载完成才会被释放。例如:
Swift
NotificationCenter.default.addObserver(
forName: .mlkitMLModelDownloadDidSucceed,
object: nil,
queue: nil
) { [weak self] notification in
guard let strongSelf = self,
let userInfo = notification.userInfo,
let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
as? RemoteModel,
model.name == "your_remote_model"
else { return }
// The model was downloaded and is available on the device
}
NotificationCenter.default.addObserver(
forName: .mlkitMLModelDownloadDidFail,
object: nil,
queue: nil
) { [weak self] notification in
guard let strongSelf = self,
let userInfo = notification.userInfo,
let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
as? RemoteModel
else { return }
let error = userInfo[ModelDownloadUserInfoKey.error.rawValue]
// ...
}
Objective-C
__weak typeof(self) weakSelf = self;
[NSNotificationCenter.defaultCenter
addObserverForName:MLKModelDownloadDidSucceedNotification
object:nil
queue:nil
usingBlock:^(NSNotification *_Nonnull note) {
if (weakSelf == nil | note.userInfo == nil) {
return;
}
__strong typeof(self) strongSelf = weakSelf;
MLKRemoteModel *model = note.userInfo[MLKModelDownloadUserInfoKeyRemoteModel];
if ([model.name isEqualToString:@"your_remote_model"]) {
// The model was downloaded and is available on the device
}
}];
[NSNotificationCenter.defaultCenter
addObserverForName:MLKModelDownloadDidFailNotification
object:nil
queue:nil
usingBlock:^(NSNotification *_Nonnull note) {
if (weakSelf == nil | note.userInfo == nil) {
return;
}
__strong typeof(self) strongSelf = weakSelf;
NSError *error = note.userInfo[MLKModelDownloadUserInfoKeyError];
}];
2. 准备输入图片
使用 UIImage
或 CMSampleBufferRef
创建一个 VisionImage
对象。
如果您使用的是 UIImage
,请按以下步骤操作:
- 使用
UIImage
创建一个VisionImage
对象。请务必指定正确的.orientation
。Swift
let image = VisionImage(image: uiImage) visionImage.orientation = image.imageOrientation
Objective-C
MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image]; visionImage.orientation = image.imageOrientation;
如果您使用的是 CMSampleBufferRef
,请按以下步骤操作:
-
指定
CMSampleBufferRef
缓冲区中所含图片数据的方向。如需获取图片方向,请运行以下命令:
Swift
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> UIImage.Orientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftMirrored : .right case .landscapeLeft: return cameraPosition == .front ? .downMirrored : .up case .portraitUpsideDown: return cameraPosition == .front ? .rightMirrored : .left case .landscapeRight: return cameraPosition == .front ? .upMirrored : .down case .faceDown, .faceUp, .unknown: return .up } }
Objective-C
- (UIImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: return position == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored : UIImageOrientationRight; case UIDeviceOrientationLandscapeLeft: return position == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored : UIImageOrientationUp; case UIDeviceOrientationPortraitUpsideDown: return position == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored : UIImageOrientationLeft; case UIDeviceOrientationLandscapeRight: return position == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored : UIImageOrientationDown; case UIDeviceOrientationUnknown: case UIDeviceOrientationFaceUp: case UIDeviceOrientationFaceDown: return UIImageOrientationUp; } }
- 使用
CMSampleBufferRef
对象和方向创建一个VisionImage
对象:Swift
let image = VisionImage(buffer: sampleBuffer) image.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition)
Objective-C
MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer]; image.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
3. 运行图片标记器
异步:
Swift
imageLabeler.process(image) { labels, error in
guard error == nil, let labels = labels, !labels.isEmpty else {
// Handle the error.
return
}
// Show results.
}
Objective-C
[imageLabeler
processImage:image
completion:^(NSArray<MLKImageLabel *> *_Nullable labels,
NSError *_Nullable error) {
if (label.count == 0) {
// Handle the error.
return;
}
// Show results.
}];
同步:
Swift
var labels: [ImageLabel]
do {
labels = try imageLabeler.results(in: image)
} catch let error {
// Handle the error.
return
}
// Show results.
Objective-C
NSError *error;
NSArray<MLKImageLabel *> *labels =
[imageLabeler resultsInImage:image error:&error];
// Show results or handle the error.
4. 获取有关已加标签的对象的信息
如果给图片添加标签的操作成功,则会返回一组 ImageLabel
。每个 ImageLabel
代表在图片中加了标签的某个事物。您可以获取每个标签的文本说明(如果在 TensorFlow Lite 模型文件的元数据中可用)、置信度分数和索引。例如:
Swift
for label in labels {
let labelText = label.text
let confidence = label.confidence
let index = label.index
}
Objective-C
for (MLKImageLabel *label in labels) {
NSString *labelText = label.text;
float confidence = label.confidence;
NSInteger index = label.index;
}
提高实时性能的相关提示
如果要在实时应用中给图片加标签,请遵循以下准则以实现最佳帧速率:
- 限制检测器的调用次数。如果在检测器运行时有新的视频帧可用,请丢弃该帧。
- 如果要将检测器的输出作为图形叠加在输入图片上,请先获取结果,然后在一个步骤中完成图片的呈现和叠加。采用这一方法,每个输入帧只需在显示表面呈现一次。如需查看示例,请参阅示例应用中的 previewOverlayView 和 FIRDetectionOverlayView 类。