firebase-ml-model-interpreter
库的 22.0.2 版引入了新的 getLatestModelFile()
方法,该方法可获取设备上自定义模型的位置。您可以使用此方法直接实例化 TensorFlow Lite Interpreter
对象,该对象可用于取代 FirebaseModelInterpreter
封装容器。
今后,我们推荐您采用这种方法。由于 TensorFlow Lite 解释器版本不再与 Firebase 库版本结合使用,因此您可以根据需要更灵活地升级到新版 TensorFlow Lite,或者更轻松地使用自定义 TensorFlow Lite 构建。
本页面介绍了如何从使用 FirebaseModelInterpreter
迁移到 TensorFlow Lite Interpreter
。
1. 更新项目依赖项
更新项目的依赖项,以包含 firebase-ml-model-interpreter
库的 22.0.2 版(或更高版本)以及 tensorflow-lite
库:
更新前
implementation("com.google.firebase:firebase-ml-model-interpreter:22.0.1")
更新后
implementation("com.google.firebase:firebase-ml-model-interpreter:22.0.2")
implementation("org.tensorflow:tensorflow-lite:2.0.0")
2. 创建 TensorFlow Lite 解释器而不是 FirebaseModelInterpreter
使用 getLatestModelFile()
获取设备上模型的位置并使用它创建 TensorFlow Lite Interpreter
,而不是创建 FirebaseModelInterpreter
。
更新前
Kotlin
val remoteModel = FirebaseCustomRemoteModel.Builder("your_model").build()
val options = FirebaseModelInterpreterOptions.Builder(remoteModel).build()
val interpreter = FirebaseModelInterpreter.getInstance(options)
Java
FirebaseCustomRemoteModel remoteModel =
new FirebaseCustomRemoteModel.Builder("your_model").build();
FirebaseModelInterpreterOptions options =
new FirebaseModelInterpreterOptions.Builder(remoteModel).build();
FirebaseModelInterpreter interpreter = FirebaseModelInterpreter.getInstance(options);
更新后
Kotlin
val remoteModel = FirebaseCustomRemoteModel.Builder("your_model").build()
FirebaseModelManager.getInstance().getLatestModelFile(remoteModel)
.addOnCompleteListener { task ->
val modelFile = task.getResult()
if (modelFile != null) {
// Instantiate an org.tensorflow.lite.Interpreter object.
interpreter = Interpreter(modelFile)
}
}
Java
FirebaseCustomRemoteModel remoteModel =
new FirebaseCustomRemoteModel.Builder("your_model").build();
FirebaseModelManager.getInstance().getLatestModelFile(remoteModel)
.addOnCompleteListener(new OnCompleteListener<File>() {
@Override
public void onComplete(@NonNull Task<File> task) {
File modelFile = task.getResult();
if (modelFile != null) {
// Instantiate an org.tensorflow.lite.Interpreter object.
Interpreter interpreter = new Interpreter(modelFile);
}
}
});
3. 更新输入和输出准备代码
通过 FirebaseModelInterpreter
,您可以在运行解释器时将 FirebaseModelInputOutputOptions
对象传递给解释器,从而指定模型的输入和输出形状。
对于 TensorFlow Lite 解释器,您需要改为以适合模型输入和输出的大小分配 ByteBuffer
对象。
例如,如果模型的输入形状为 [1 224 224 3] float
值且输出形状为 [1 1000] float
值,请进行以下更改:
更新前
Kotlin
val inputOutputOptions = FirebaseModelInputOutputOptions.Builder()
.setInputFormat(0, FirebaseModelDataType.FLOAT32, intArrayOf(1, 224, 224, 3))
.setOutputFormat(0, FirebaseModelDataType.FLOAT32, intArrayOf(1, 1000))
.build()
val input = ByteBuffer.allocateDirect(224*224*3*4).order(ByteOrder.nativeOrder())
// Then populate with input data.
val inputs = FirebaseModelInputs.Builder()
.add(input)
.build()
interpreter.run(inputs, inputOutputOptions)
.addOnSuccessListener { outputs ->
// ...
}
.addOnFailureListener {
// Task failed with an exception.
// ...
}
Java
FirebaseModelInputOutputOptions inputOutputOptions =
new FirebaseModelInputOutputOptions.Builder()
.setInputFormat(0, FirebaseModelDataType.FLOAT32, new int[]{1, 224, 224, 3})
.setOutputFormat(0, FirebaseModelDataType.FLOAT32, new int[]{1, 1000})
.build();
float[][][][] input = new float[1][224][224][3];
// Then populate with input data.
FirebaseModelInputs inputs = new FirebaseModelInputs.Builder()
.add(input)
.build();
interpreter.run(inputs, inputOutputOptions)
.addOnSuccessListener(
new OnSuccessListener<FirebaseModelOutputs>() {
@Override
public void onSuccess(FirebaseModelOutputs result) {
// ...
}
})
.addOnFailureListener(
new OnFailureListener() {
@Override
public void onFailure(@NonNull Exception e) {
// Task failed with an exception
// ...
}
});
更新后
Kotlin
val inBufferSize = 1 * 224 * 224 * 3 * java.lang.Float.SIZE / java.lang.Byte.SIZE
val inputBuffer = ByteBuffer.allocateDirect(inBufferSize).order(ByteOrder.nativeOrder())
// Then populate with input data.
val outBufferSize = 1 * 1000 * java.lang.Float.SIZE / java.lang.Byte.SIZE
val outputBuffer = ByteBuffer.allocateDirect(outBufferSize).order(ByteOrder.nativeOrder())
interpreter.run(inputBuffer, outputBuffer)
Java
int inBufferSize = 1 * 224 * 224 * 3 * java.lang.Float.SIZE / java.lang.Byte.SIZE;
ByteBuffer inputBuffer =
ByteBuffer.allocateDirect(inBufferSize).order(ByteOrder.nativeOrder());
// Then populate with input data.
int outBufferSize = 1 * 1000 * java.lang.Float.SIZE / java.lang.Byte.SIZE;
ByteBuffer outputBuffer =
ByteBuffer.allocateDirect(outBufferSize).order(ByteOrder.nativeOrder());
interpreter.run(inputBuffer, outputBuffer);
4. 更新输出处理代码
最后,不要使用 FirebaseModelOutputs
对象的 getOutput()
方法获取模型的输出,而是将 ByteBuffer
输出转换为对您的使用场景而言很方便的任何结构。
例如,如果您要执行分类,则可以进行如下更改:
更新前
Kotlin
val output = result.getOutput(0)
val probabilities = output[0]
try {
val reader = BufferedReader(InputStreamReader(assets.open("custom_labels.txt")))
for (probability in probabilities) {
val label: String = reader.readLine()
println("$label: $probability")
}
} catch (e: IOException) {
// File not found?
}
Java
float[][] output = result.getOutput(0);
float[] probabilities = output[0];
try {
BufferedReader reader = new BufferedReader(
new InputStreamReader(getAssets().open("custom_labels.txt")));
for (float probability : probabilities) {
String label = reader.readLine();
Log.i(TAG, String.format("%s: %1.4f", label, probability));
}
} catch (IOException e) {
// File not found?
}
更新后
Kotlin
modelOutput.rewind()
val probabilities = modelOutput.asFloatBuffer()
try {
val reader = BufferedReader(
InputStreamReader(assets.open("custom_labels.txt")))
for (i in probabilities.capacity()) {
val label: String = reader.readLine()
val probability = probabilities.get(i)
println("$label: $probability")
}
} catch (e: IOException) {
// File not found?
}
Java
modelOutput.rewind();
FloatBuffer probabilities = modelOutput.asFloatBuffer();
try {
BufferedReader reader = new BufferedReader(
new InputStreamReader(getAssets().open("custom_labels.txt")));
for (int i = 0; i < probabilities.capacity(); i++) {
String label = reader.readLine();
float probability = probabilities.get(i);
Log.i(TAG, String.format("%s: %1.4f", label, probability));
}
} catch (IOException e) {
// File not found?
}