تنظیمات ایمنی را درک کرده و از آن استفاده کنید


می توانید از تنظیمات ایمنی برای تنظیم احتمال دریافت پاسخ هایی که ممکن است مضر تلقی شوند استفاده کنید. به‌طور پیش‌فرض، تنظیمات ایمنی محتوایی را با احتمال متوسط ​​و/یا زیاد ناامن بودن محتوا در همه ابعاد مسدود می‌کند.

پرش به تنظیمات ایمنی Gemini پرش به تنظیمات ایمنی Imagen

تنظیمات ایمنی برای مدل های Gemini

درباره تنظیمات ایمنی در اسناد Google Cloud بیشتر بدانید.

شما SafetySettings را در طول مقداردهی اولیه مدل پیکربندی می کنید. در اینجا چند نمونه اساسی آورده شده است.

در اینجا نحوه تنظیم یک تنظیم ایمنی آورده شده است:

KotlinJava
import com.google.firebase.vertexai.type.HarmBlockThreshold
import com.google.firebase.vertexai.type.HarmCategory
import com.google.firebase.vertexai.type.SafetySetting

val generativeModel = Firebase.vertexAI.generativeModel(
    modelName = "GEMINI_MODEL_NAME",
    safetySettings = listOf(
        SafetySetting(HarmCategory.HARASSMENT, HarmBlockThreshold.ONLY_HIGH)
    )
)

// ...
SafetySetting harassmentSafety = new SafetySetting(HarmCategory.HARASSMENT,
    HarmBlockThreshold.ONLY_HIGH);

GenerativeModel gm = FirebaseVertexAI.getInstance().generativeModel(
    "GEMINI_MODEL_NAME",
    /* generationConfig is optional */ null,
    Collections.singletonList(harassmentSafety)
);

GenerativeModelFutures model = GenerativeModelFutures.from(gm);

// ...

همچنین می توانید بیش از یک تنظیم ایمنی را تنظیم کنید:

KotlinJava
import com.google.firebase.vertexai.type.HarmBlockThreshold
import com.google.firebase.vertexai.type.HarmCategory
import com.google.firebase.vertexai.type.SafetySetting

val harassmentSafety = SafetySetting(HarmCategory.HARASSMENT, HarmBlockThreshold.ONLY_HIGH)

val hateSpeechSafety = SafetySetting(HarmCategory.HATE_SPEECH, HarmBlockThreshold.MEDIUM_AND_ABOVE)

val generativeModel = Firebase.vertexAI.generativeModel(
    modelName = "GEMINI_MODEL_NAME",
    safetySettings = listOf(harassmentSafety, hateSpeechSafety)
)

// ...
SafetySetting harassmentSafety = new SafetySetting(HarmCategory.HARASSMENT,
    HarmBlockThreshold.ONLY_HIGH);

SafetySetting hateSpeechSafety = new SafetySetting(HarmCategory.HATE_SPEECH,
    HarmBlockThreshold.MEDIUM_AND_ABOVE);

GenerativeModel gm = FirebaseVertexAI.getInstance().generativeModel(
    "GEMINI_MODEL_NAME",
    /* generationConfig is optional */ null,
    List.of(harassmentSafety, hateSpeechSafety)
);

GenerativeModelFutures model = GenerativeModelFutures.from(gm);

// ...

تنظیمات ایمنی برای مدل های Imagen

با تمام تنظیمات ایمنی پشتیبانی شده و مقادیر موجود آنها برای مدل های Imagen آشنا شوید.

KotlinJava
val imagenModel = Firebase.vertexAI.imagenModel(
  modelName = "IMAGEN_MODEL_NAME",
  // Configure image generation safety settings for the model
  safetySettings = ImagenSafetySettings(
    safetyFilterLevel = ImagenSafetyFilterLevel.BLOCK_LOW_AND_ABOVE,
    personFilterLevel = ImagenPersonFilterLevel.BLOCK_ALL
  )
)

// ...
ImagenModel imagenModel =
    FirebaseVertexAI.getInstance().imagenModel(
            /* modelName */ "IMAGEN_MODEL_NAME",
            /* imageGenerationConfig */ null);
ImagenModelFutures model = ImagenModelFutures.from(imagenModel);

// ...

گزینه های دیگر برای کنترل تولید محتوا

  • در مورد طراحی سریع بیشتر بیاموزید تا بتوانید مدل را تحت تأثیر قرار دهید تا خروجی خاصی برای نیازهای شما ایجاد کند.
  • پارامترهای مدل را برای کنترل نحوه ایجاد پاسخ توسط مدل پیکربندی کنید. برای مدل‌های Gemini ، این پارامترها شامل حداکثر توکن‌های خروجی، دما، topK و topP هستند. برای مدل های Imagen ، این موارد شامل نسبت ابعاد، تولید شخص، واترمارک و غیره است.
  • دستورالعمل های سیستم را برای هدایت رفتار مدل تنظیم کنید. این ویژگی مانند یک «مقدمه» است که قبل از اینکه مدل در معرض هر دستورالعمل دیگری از کاربر نهایی قرار گیرد، اضافه می‌کنید.
  • یک طرح پاسخ را همراه با اعلان برای تعیین یک طرح خروجی خاص ارسال کنید. این ویژگی بیشتر هنگام تولید خروجی JSON استفاده می‌شود، اما می‌توان از آن برای کارهای طبقه‌بندی نیز استفاده کرد (مانند زمانی که می‌خواهید مدل از برچسب‌ها یا برچسب‌های خاصی استفاده کند).