במדריך הזה מוסבר איך להתחיל לבצע קריאות ל-Vertex AI Gemini API ישירות מהאפליקציה באמצעות ה-SDK של Vertex AI in Firebase לפלטפורמה שבחרתם.
אפשרויות אחרות לעבודה עם Gemini API
אפשר גם להתנסות בגרסה חלופית 'Google AI' של Gemini API
כדי לקבל גישה בחינם (במגבלות ובאזורים שבהם היא זמינה) באמצעות Google AI Studio ו-Google AI SDK ללקוח. צריך להשתמש ב-SDK האלה לצורך יצירת אב טיפוס בלבד באפליקציות לנייד ובאפליקציות אינטרנט.אחרי שתתמצאו באופן שבו פועל Gemini API, תוכלו לעבור ל-Vertex AI in Firebase SDKs (המסמכים האלה) שיש בהם תכונות נוספות רבות שחשובות לאפליקציות לנייד ולאפליקציות אינטרנט, כמו הגנה על ה-API מפני ניצול לרעה באמצעות Firebase App Check ותמיכה בבקשות עם קובצי מדיה גדולים.
אפשר גם להפעיל את Vertex AI Gemini API בצד השרת (למשל באמצעות Python, Node.js או Go)
. משתמשים בערכות ה-SDK של Vertex AI בצד השרת, ב-Firebase Genkit או ב-Firebase Extensions עבור Gemini API.
דרישות מוקדמות
במדריך הזה אנחנו יוצאים מנקודת הנחה שאתם מכירים את השימוש ב-Android Studio לפיתוח אפליקציות ל-Android.
חשוב לוודא שסביבת הפיתוח והאפליקציה ל-Android עומדות בדרישות הבאות:
- Android Studio (הגרסה האחרונה)
- האפליקציה ל-Android חייבת לטרגט ל-API ברמה 21 ומעלה.
(אופציונלי) כדאי לבדוק את האפליקציה לדוגמה.
אתם יכולים לנסות את ה-SDK במהירות, לראות הטמעה מלאה של תרחישים שונים לדוגמה או להשתמש באפליקציית הדוגמה אם אין לכם אפליקציה משלכם ל-Android. כדי להשתמש באפליקציית הדוגמה, תצטרכו לקשר אותה לפרויקט Firebase.
שלב 1: מגדירים פרויקט Firebase ומקשרים את האפליקציה ל-Firebase
אם כבר יש לכם פרויקט Firebase ואפליקציה שמחוברת ל-Firebase
במסוף Firebase, עוברים לדף Build with Gemini.
לוחצים על הכרטיס Vertex AI in Firebase כדי להפעיל תהליך עבודה שיעזור לכם לבצע את המשימות הבאות:
משדרגים את הפרויקט לתוכנית התמחור Blaze בתשלום לפי שימוש.
מפעילים את ממשקי ה-API הנדרשים בפרויקט (Vertex AI API ו-Vertex AI in Firebase API).
עוברים לשלב הבא במדריך כדי להוסיף את ה-SDK לאפליקציה.
אם עדיין אין לכם פרויקט Firebase ואפליקציה שמחוברת ל-Firebase
הגדרת פרויקט Firebase
נכנסים למסוף Firebase.
לוחצים על יצירת פרויקט ומשתמשים באחת מהאפשרויות הבאות:
אפשרות 1: יוצרים פרויקט Firebase חדש לגמרי (ואת הפרויקט הבסיסי Google Cloud שלו באופן אוטומטי) על ידי הזנת שם פרויקט חדש בשלב הראשון של תהליך העבודה 'יצירת פרויקט'.
אפשרות 2: 'הוספת Firebase' לפרויקט Google Cloud קיים. לשם כך, בוחרים את שם הפרויקט ב-Google Cloud בתפריט הנפתח בשלב הראשון בתהליך העבודה 'יצירת פרויקט'.
הערה: כשמוצגת בקשה, לא צריך להגדיר את Google Analytics כדי להשתמש ב-SDKs של Vertex AI in Firebase.
במסוף Firebase, עוברים לדף Build with Gemini.
לוחצים על הכרטיס Vertex AI in Firebase כדי להפעיל תהליך עבודה שיעזור לכם לבצע את המשימות הבאות:
משדרגים את הפרויקט לתוכנית התמחור Blaze בתשלום לפי שימוש.
מפעילים את ממשקי ה-API הנדרשים בפרויקט (Vertex AI API ו-Vertex AI in Firebase API).
קישור האפליקציה ל-Firebase
ממשיכים בתהליך העבודה של ה-AI הגנרטיבי במסוף כדי לקשר את האפליקציה ל-Firebase. התהליך כולל את המשימות הבאות:
רישום האפליקציה בפרויקט Firebase.
מוסיפים לאפליקציה את קובץ התצורה של Firebase (
) ואת הפלאגיןgoogle-services.json
ל-Gradle.google-services
בשלבים הבאים של המדריך הזה תוסיפו את ה-SDK של Vertex AI in Firebase לאפליקציה ותבצעו את האיפוס הנדרש שספציפי לשימוש ב-SDK וב-Gemini API.
שלב 2: מוסיפים את ה-SDK
אחרי שמגדירים את פרויקט Firebase ומחברים את האפליקציה ל-Firebase (ראו שלב קודם), אפשר להוסיף את ה-SDK של Vertex AI in Firebase לאפליקציה.
Vertex AI in Firebase SDK ל-Android (firebase-vertexai
) מספק גישה ל-Vertex AI Gemini API.
בקובץ Gradle של המודול (ברמת האפליקציה) (כמו <project>/<app-module>/build.gradle.kts
), מוסיפים את התלות בספרייה Vertex AI in Firebase ל-Android.
מומלץ להשתמש ב-Firebase Android BoM כדי לשלוט בגרסאות הספרייה.
dependencies { // ... other androidx dependencies // Import the BoM for the Firebase platform implementation(platform("com.google.firebase:firebase-bom:33.9.0")) // Add the dependency for the Vertex AI in Firebase library // When using the BoM, you don't specify versions in Firebase library dependencies implementation("com.google.firebase:firebase-vertexai") }
ב-Java, צריך להוסיף עוד שתי ספריות.
dependencies { // ... other androidx dependencies // Import the BoM for the Firebase platform implementation(platform("com.google.firebase:firebase-bom:33.9.0")) // Add the dependency for the Vertex AI in Firebase library // When using the BoM, you don't specify versions in Firebase library dependencies implementation("com.google.firebase:firebase-vertexai") // Required for one-shot operations (to use `ListenableFuture` from Guava Android) implementation("com.google.guava:guava:31.0.1-android") // Required for streaming operations (to use `Publisher` from Reactive Streams) implementation("org.reactivestreams:reactive-streams:1.0.4") }
כשמשתמשים ב-Firebase Android BoM, האפליקציה תמיד תשתמש בגרסאות תואמות של ספריות Firebase ל-Android.
(חלופה) מוסיפים יחסי תלות לספריות של Firebase בלי להשתמש ב-BoM
אם בוחרים לא להשתמש ב-Firebase BoM, צריך לציין כל גרסה של ספריית Firebase בשורת התלות שלה.
שימו לב: אם אתם משתמשים במספר ספריות של Firebase באפליקציה, מומלץ מאוד להשתמש ב-BoM כדי לנהל את הגרסאות של הספריות, וכך להבטיח שכל הגרסאות תואמות.
dependencies { // Add the dependency for the Vertex AI in Firebase library // When NOT using the BoM, you must specify versions in Firebase library dependencies implementation("com.google.firebase:firebase-vertexai:16.1.0") }
שלב 3: מאתחלים את השירות Vertex AI ואת המודל הגנרטיבי
לפני שתוכלו לבצע קריאות API, תצטרכו לאתחל את השירות Vertex AI ואת המודל הגנרטיבי.
// Initialize the Vertex AI service and the generative model
// Specify a model that supports your use case
val generativeModel = Firebase.vertexAI.generativeModel("gemini-2.0-flash")
Publisher
מספריית Reactive Streams.
// Initialize the Vertex AI service and the generative model
// Specify a model that supports your use case
GenerativeModel gm = FirebaseVertexAI.getInstance()
.generativeModel("gemini-2.0-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
אחרי שתסיימו לקרוא את המדריך למתחילים, תוכלו ללמוד איך לבחור מודל של Gemini ו (אופציונלי) מיקום שמתאים לאפליקציה ולתרחיש השימוש שלכם.
שלב 4: קוראים ל-Vertex AI Gemini API
אחרי שחברתם את האפליקציה ל-Firebase, הוספתם את ה-SDK ואתחלתם את השירות Vertex AI ואת המודל הגנרטיבי, אתם מוכנים לבצע קריאה ל-Vertex AI Gemini API.
אפשר להשתמש ב-generateContent()
כדי ליצור טקסט מבקשת הנחיה בטקסט בלבד:
// Initialize the Vertex AI service and the generative model
// Specify a model that supports your use case
val generativeModel = Firebase.vertexAI.generativeModel("gemini-2.0-flash")
// Provide a prompt that contains text
val prompt = "Write a story about a magic backpack."
// To generate text output, call generateContent with the text input
val response = generativeModel.generateContent(prompt)
print(response.text)
ListenableFuture
.
// Initialize the Vertex AI service and the generative model
// Specify a model that supports your use case
GenerativeModel gm = FirebaseVertexAI.getInstance()
.generativeModel("gemini-2.0-flash");
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
// Provide a prompt that contains text
Content prompt = new Content.Builder()
.addText("Write a story about a magic backpack.")
.build();
// To generate text output, call generateContent with the text input
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
מה עוד אפשר לעשות?
מידע נוסף על המודלים של Gemini
כאן תוכלו לקרוא מידע נוסף על המודלים הזמינים לתרחישי שימוש שונים, ועל המכסות והתמחור שלהם.
ניסיון ביכולות אחרות של Gemini API
- מידע נוסף על יצירת טקסט מאותות 'טקסט בלבד', כולל הסבר על סטרימינג של התשובה
- יצירת טקסט מהנחיות מולטימודיאליות (כולל טקסט, תמונות, קובצי PDF, וידאו ואודיו).
- ליצור שיחות עם זיכרון (צ'אט).
- יצירת פלט מובנה (כמו JSON) גם מהנחיות טקסט וגם מהנחיות מולטימודיאליות.
- משתמשים בקריאה לפונקציה כדי לחבר מודלים גנרטיביים למערכות ולמידע חיצוניים.
איך שולטים ביצירת תוכן
- הסבר על תכנון הנחיות, כולל שיטות מומלצות, אסטרטגיות והנחיות לדוגמה.
- להגדיר את הפרמטרים של המודל, כמו הטמפרטורה ואת מספר האסימונים המקסימלי של הפלט.
- שימוש בהגדרות הבטיחות כדי לשנות את הסבירות לקבלת תשובות שעשויות להיחשב כמזיקות.
שליחת משוב על חוויית השימוש ב-Vertex AI in Firebase