این راهنما به شما نشان میدهد که چگونه میتوانید با استفاده از Vertex AI in Firebase SDK برای پلتفرم انتخابی خود، مستقیماً از برنامه خود با Vertex AI Gemini API تماس بگیرید.
به صورت اختیاری با نسخه جایگزین « Google AI » از Gemini API آزمایش کنید
با استفاده از Google AI Studio و Google AI Client SDK، دسترسی رایگان (در محدوده و در صورت وجود) دریافت کنید. این SDK ها باید فقط برای نمونه سازی در برنامه های موبایل و وب استفاده شوند.بعد از اینکه با نحوه عملکرد Gemini API آشنا شدید، به Vertex AI in Firebase SDK (این مستندات) مهاجرت کنید ، که دارای بسیاری از ویژگیهای اضافی مهم برای برنامههای موبایل و وب هستند، مانند محافظت از API در برابر سوء استفاده با استفاده از Firebase App Check و پشتیبانی از فایل های رسانه ای بزرگ در درخواست ها
به صورت اختیاری Vertex AI Gemini API سمت سرور را فراخوانی کنید (مانند Python، Node.js یا Go)
از Vertex AI SDK ، Firebase Genkit یا Firebase Extensions برای Gemini API استفاده کنید.
پیش نیازها
مرحله 1 : یک پروژه Firebase راه اندازی کنید و برنامه خود را به Firebase متصل کنید
اگر قبلاً یک پروژه Firebase و یک برنامه متصل به Firebase دارید
در کنسول Firebase ، به صفحه Build with Gemini بروید.
روی Vertex AI in Firebase کلیک کنید تا یک گردش کاری راه اندازی شود که به شما کمک می کند کارهای زیر را انجام دهید:
پروژه خود را ارتقا دهید تا از طرح قیمت گذاری Blaze استفاده کنید.
API های مورد نیاز را در پروژه خود فعال کنید ( Vertex AI API و Vertex AI in Firebase API).
برای افزودن SDK به برنامه خود، مرحله بعدی این راهنما را ادامه دهید.
اگر قبلاً یک پروژه Firebase و یک برنامه متصل به Firebase ندارید
وارد کنسول Firebase شوید.
روی ایجاد پروژه کلیک کنید و سپس از یکی از گزینه های زیر استفاده کنید:
گزینه 1 : با وارد کردن نام پروژه جدید در اولین مرحله از گردش کار «ایجاد پروژه»، یک پروژه کاملاً جدید Firebase (و پروژه Google Cloud زیربنایی آن به صورت خودکار) ایجاد کنید.
گزینه 2 : «افزودن Firebase» به پروژه Google Cloud موجود با انتخاب نام پروژه Google Cloud خود از منوی کشویی در مرحله اول گردش کار «ایجاد پروژه».
توجه داشته باشید که وقتی از شما خواسته شد، برای استفاده از Vertex AI in Firebase SDK نیازی به تنظیم Google Analytics ندارید .
در کنسول Firebase ، به صفحه Build with Gemini بروید.
روی Vertex AI in Firebase کلیک کنید تا یک گردش کاری راه اندازی شود که به شما کمک می کند کارهای زیر را انجام دهید:
پروژه خود را ارتقا دهید تا از طرح قیمت گذاری Blaze استفاده کنید.
API های مورد نیاز را در پروژه خود فعال کنید ( Vertex AI API و Vertex AI in Firebase API).
مرحله 2 : SDK را اضافه کنید
با راه اندازی پروژه Firebase و اتصال برنامه به Firebase (مرحله قبل را ببینید)، اکنون می توانید Vertex AI in Firebase SDK را به برنامه خود اضافه کنید.
مرحله 3 : سرویس Vertex AI و مدل مولد را راه اندازی کنید
قبل از اینکه بتوانید تماس API برقرار کنید، باید سرویس Vertex AI و مدل تولیدی را مقداردهی اولیه کنید.
وقتی راهنمای شروع کار را تمام کردید، یاد بگیرید که چگونه یک مدل Gemini و (به صورت اختیاری) مکان مناسب برای مورد استفاده و برنامه خود را انتخاب کنید.
مرحله 4 : Vertex AI Gemini API را فراخوانی کنید
اکنون که برنامه خود را به Firebase متصل کردهاید، SDK را اضافه کردهاید و سرویس Vertex AI و مدل تولیدی را راهاندازی کردهاید، آماده فراخوانی Vertex AI Gemini API هستید.
شما می توانید generateContent()
برای تولید متن از یک درخواست اعلان متنی استفاده کنید:
چه کار دیگری می توانید انجام دهید؟
در مورد مدل های جمینی بیشتر بدانید
در مورد مدل های موجود برای موارد استفاده مختلف و سهمیه ها و قیمت آنها اطلاعات کسب کنید.سایر قابلیت های Gemini API را امتحان کنید
- درباره ایجاد متن از اعلانهای فقط متنی ، از جمله نحوه پخش جریانی پاسخ، بیشتر بیاموزید.
- متن را از اعلانهای چندوجهی (شامل متن، تصاویر، PDF، ویدئو و صدا) تولید کنید.
- مکالمات چند نوبتی (چت) بسازید.
- خروجی ساختاریافته (مانند JSON) را هم از دستورات متنی و هم از چند وجهی ایجاد کنید.
- از فراخوانی تابع برای اتصال مدل های مولد به سیستم ها و اطلاعات خارجی استفاده کنید.
یاد بگیرید چگونه تولید محتوا را کنترل کنید
- طراحی سریع، از جمله بهترین شیوهها، استراتژیها و درخواستهای نمونه را درک کنید .
- پارامترهای مدل مانند دما و حداکثر نشانه های خروجی را پیکربندی کنید .
- از تنظیمات ایمنی برای تنظیم احتمال دریافت پاسخ هایی که ممکن است مضر تلقی شوند استفاده کنید .
درباره تجربه خود با Vertex AI in Firebase بازخورد بدهید