In diesem Leitfaden erfahren Sie, wie Sie mit dem Vertex AI in Firebase SDK für die von Ihnen ausgewählte Plattform direkt über Ihre App Aufrufe an Vertex AI Gemini API senden.
Vorbereitung
In diesem Leitfaden wird davon ausgegangen, dass Sie mit der Verwendung von JavaScript zur Entwicklung von Webanwendungen vertraut sind. Dieser Leitfaden ist frameworkunabhängig.
Ihre Entwicklungsumgebung und Webanwendung müssen die folgenden Anforderungen erfüllen:
- Optional: Node.js
- Moderner Webbrowser
Optional: Sehen Sie sich die Beispiel-App an.
Beispielanwendung herunterladen
Sie können das SDK schnell ausprobieren, sich eine vollständige Implementierung verschiedener Anwendungsfälle ansehen oder die Beispiel-App verwenden, wenn Sie keine eigene Web-App haben. Um die Beispiel-App zu verwenden, müssen Sie sie mit einem Firebase-Projekt verknüpfen.
Schritt 1: Firebase-Projekt einrichten und App mit Firebase verknüpfen
Wenn Sie bereits ein Firebase-Projekt und eine mit Firebase verbundene App haben
Rufen Sie in der Firebase Console die Seite Mit Gemini erstellen auf.
Klicken Sie auf die Karte Vertex AI in Firebase, um einen Workflow zu starten, mit dem Sie die folgenden Aufgaben erledigen können:
Aktualisieren Sie Ihr Projekt, um den Blaze-Tarif (Pay as you go) zu verwenden.
Aktivieren Sie die erforderlichen APIs in Ihrem Projekt (Vertex AI API und Vertex AI in Firebase API).
Fahren Sie mit dem nächsten Schritt in dieser Anleitung fort, um das SDK Ihrer App hinzuzufügen.
Wenn Sie noch kein Firebase-Projekt und keine mit Firebase verknüpfte App haben
Schritt 2: SDK hinzufügen
Nachdem Sie Ihr Firebase-Projekt eingerichtet und Ihre App mit Firebase verbunden haben (siehe vorheriger Schritt), können Sie Ihrer App jetzt das Vertex AI in Firebase SDK hinzufügen.
Die Vertex AI in Firebase-Bibliothek bietet Zugriff auf die Vertex AI Gemini API und ist Teil des Firebase JavaScript SDK for Web.
So installieren Sie das Firebase JS SDK für das Web mit npm:
npm install firebase
Firebase in Ihrer App initialisieren:
import { initializeApp } from "firebase/app"; // TODO(developer) Replace the following with your app's Firebase configuration // See: https://firebase.google.com/docs/web/learn-more#config-object const firebaseConfig = { // ... }; // Initialize FirebaseApp const firebaseApp = initializeApp(firebaseConfig);
Schritt 3: Vertex AI-Dienst und generatives Modell initialisieren
Bevor Sie API-Aufrufe ausführen können, müssen Sie den Vertex AI-Dienst und das generative Modell initialisieren.
import { initializeApp } from "firebase/app";
import { getVertexAI, getGenerativeModel } from "firebase/vertexai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Vertex AI service
const vertexAI = getVertexAI(firebaseApp);
// Initialize the generative model with a model that supports your use case
// Gemini 1.5 models are versatile and can be used with all API capabilities
const model = getGenerativeModel(vertexAI, { model: "gemini-1.5-flash" });
Nachdem Sie die Anleitung zum Einstieg durchgearbeitet haben, erfahren Sie, wie Sie ein Gemini-Modell und (optional) einen Standort auswählen, der für Ihren Anwendungsfall und Ihre App geeignet ist.
Schritt 4: Vertex AI Gemini API anrufen
Nachdem Sie Ihre App mit Firebase verbunden, das SDK hinzugefügt und den Vertex AI-Dienst und das generative Modell initialisiert haben, können Sie Vertex AI Gemini API aufrufen.
Mit generateContent()
können Sie Text aus einer Promptanfrage mit reinem Text generieren:
import { initializeApp } from "firebase/app";
import { getVertexAI, getGenerativeModel } from "firebase/vertexai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Vertex AI service
const vertexAI = getVertexAI(firebaseApp);
// Initialize the generative model with a model that supports your use case
// Gemini 1.5 models are versatile and can be used with all API capabilities
const model = getGenerativeModel(vertexAI, { model: "gemini-1.5-flash" });
// Wrap in an async function so you can use await
async function run() {
// Provide a prompt that contains text
const prompt = "Write a story about a magic backpack."
// To generate text output, call generateContent with the text input
const result = await model.generateContent(prompt);
const response = result.response;
const text = response.text();
console.log(text);
}
run();
Was können Sie sonst noch tun?
Weitere Informationen zu den Gemini-Modellen
Hier finden Sie Informationen zu den Modellen, die für verschiedene Anwendungsfälle verfügbar sind, sowie zu ihren Kontingenten und Preisen.
Weitere Funktionen des Gemini API ausprobieren
- Weitere Informationen zum Generieren von Text aus Prompts, die nur aus Text bestehen, einschließlich der Möglichkeit, die Antwort zu streamen
- Text aus multimodalen Prompts generieren (einschließlich Text, Bildern, PDFs, Videos und Audio).
- Unterhaltungen mit mehreren Antworten (Chat) erstellen
- Sie können sowohl aus Text- als auch aus multimodalen Prompts strukturierte Ausgabe (z. B. JSON) generieren.
- Verwenden Sie Funktionsaufrufe, um generative Modelle mit externen Systemen und Informationen zu verbinden.
Inhaltserstellung steuern
- Informationen zum Prompt-Design, einschließlich Best Practices, Strategien und Beispiel-Prompts.
- Konfigurieren Sie Modellparameter wie Temperatur und maximale Ausgabetokens.
- Mit den Sicherheitseinstellungen können Sie die Wahrscheinlichkeit anpassen, dass Sie Antworten erhalten, die als schädlich eingestuft werden könnten.
Feedback zu Vertex AI in Firebase geben