يوضّح لك هذا الدليل كيفية بدء إجراء مكالمات إلى Vertex AI Gemini API مباشرةً من تطبيقك باستخدام حزمة تطوير البرامج (SDK) Vertex AI in Firebase لنظام التشغيل الذي اخترته.
يُرجى العِلم أنّه يمكنك أيضًا استخدام هذا الدليل للبدء في الوصول إلى نماذج Imagen باستخدام Vertex AI in Firebase حِزم SDK.
المتطلبات الأساسية
يفترض هذا الدليل أنّك على دراية بتطوير التطبيقات باستخدام Flutter.
تأكَّد من أنّ بيئة التطوير وتطبيق Flutter يستوفيان المتطلبات التالية:
- Dart 3.2.0 والإصدارات الأحدث
(اختياري) اطّلِع على نموذج التطبيق.
يمكنك تجربة حزمة تطوير البرامج (SDK) بسرعة، أو الاطّلاع على تنفيذ كامل لحالات الاستخدام المختلفة، أو استخدام النموذج التطبيقي إذا لم يكن لديك تطبيق Flutter. ولاستخدام النموذج التطبيقي، عليك ربطه بمشروع على Firebase.
الخطوة 1: إعداد مشروع على Firebase وربط تطبيقك بمنصّة Firebase
إذا كان لديك سابقًا مشروع على Firebase وتطبيق مرتبط به
في وحدة تحكّم Firebase، انتقِل إلى صفحة الإنشاء باستخدام Gemini.
انقر على بطاقة Vertex AI in Firebase لبدء سير عمل يساعدك في إكمال المهام التالية:
يمكنك ترقية مشروعك لاستخدام خطة أسعار Blaze المستندة إلى الدفع حسب الاستخدام.
فعِّل واجهات برمجة التطبيقات المطلوبة في مشروعك (Vertex AI API و Vertex AI in Firebase API).
انتقِل إلى الخطوة التالية في هذا الدليل لإضافة حزمة SDK إلى تطبيقك.
إذا لم يكن لديك مشروع على Firebase وتطبيق مرتبط به
الخطوة 2: إضافة حزمة تطوير البرامج (SDK)
بعد إعداد مشروعك على Firebase وربط تطبيقك بمنصّة Firebase (راجِع الخطوة السابقة)، يمكنك الآن إضافة حزمة تطوير البرامج (SDK) لنظام Vertex AI in Firebase إلى تطبيقك.
يقدّم المكوّن الإضافي Vertex AI in Firebase لتطبيق Flutter (firebase_vertexai
)
إمكانية الوصول إلى واجهات برمجة التطبيقات للتفاعل مع نماذج
Gemini وImagen.
من دليل مشروع Flutter، نفِّذ الأمر التالي لتثبيت المكوّن الإضافي الأساسي والمكوّن الإضافي Vertex AI in Firebase:
flutter pub add firebase_core && flutter pub add firebase_vertexai
في ملف
lib/main.dart
، استورِد المكوّن الإضافي الأساسي لـ Firebase ومكوّن Vertex AI in Firebase الإضافي وملف الإعداد الذي أنشأته في وقت سابق:import 'package:firebase_core/firebase_core.dart'; import 'package:firebase_vertexai/firebase_vertexai.dart'; import 'firebase_options.dart';
في ملف
lib/main.dart
أيضًا، يمكنك إعداد Firebase باستخدام كائنDefaultFirebaseOptions
الذي تم تصديره من ملف الإعدادات:await Firebase.initializeApp( options: DefaultFirebaseOptions.currentPlatform, );
إعادة إنشاء تطبيق Flutter:
flutter run
الخطوة 3: بدء خدمة Vertex AI والنموذج التوليدي
قبل أن تتمكّن من إجراء أي طلبات إلى واجهة برمجة التطبيقات وطلب نموذج Gemini، عليك تهيئة خدمة Vertex AI والنموذج التوليدي.
import 'package:firebase_vertexai/firebase_vertexai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Vertex AI service and the generative model
// Specify a model that supports your use case
final model =
FirebaseVertexAI.instance.generativeModel(model: 'gemini-2.0-flash');
بعد الانتهاء من هذا الدليل المخصّص للمبتدئين، تعرَّف على كيفية اختيار نموذج و (اختياريًا) موقع جغرافي مناسبَين لحالة الاستخدام والتطبيق.
الخطوة 4: إرسال طلب طلب إلى نموذج
بعد ربط تطبيقك بمنصّة Firebase وإضافة حزمة تطوير البرامج (SDK) وبدء استخدام خدمة Vertex AI والنموذج التوليدي، يمكنك إرسال طلب طلب إلى نموذج Gemini.
يمكنك استخدام generateContent()
لإنشاء نص من طلب نصي فقط:
طلب:
import 'package:firebase_vertexai/firebase_vertexai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Vertex AI service and the generative model
// Specify a model that supports your use case
final model =
FirebaseVertexAI.instance.generativeModel(model: 'gemini-2.0-flash');
// Provide a prompt that contains text
final prompt = [Content.text('Write a story about a magic backpack.')];
// To generate text output, call generateContent with the text input
final response = await model.generateContent(prompt);
print(response.text);
ما هي الإجراءات الأخرى التي يمكنك اتّخاذها؟
مزيد من المعلومات عن الطُرز المتوافقة
اطّلِع على مزيد من المعلومات عن النماذج المتاحة لحالات الاستخدام المختلفة واطلاعك على الحصص و الأسعار.
تجربة إمكانات أخرى في Gemini API
- اطّلِع على مزيد من المعلومات عن إنشاء نص من طلبات نصية فقط، بما في ذلك كيفية بثّ الردّ.
- إنشاء نص من طلبات متعددة الوسائط (بما في ذلك النصوص والصور وملفات PDF والفيديوهات والمحتوى الصوتي)
- إنشاء محادثات متعددة المقاطع (محادثة)
- إنشاء إخراج منظَّم (مثل تنسيق JSON) من كلّ من الطلبات النصية والطلبات المتعددة الوسائط
- استخدِم استدعاء الدوال لربط النماذج التوليدية بالأنظمة والمعلومات الخارجية.
التعرّف على كيفية التحكّم في إنشاء المحتوى
- التعرّف على تصميم الطلبات، بما في ذلك أفضل الممارسات والاستراتيجيات وأمثلة الطلبات
- ضبط مَعلمات النموذج، مثل درجة الحرارة والحد الأقصى لرموز الإخراج (لميزة Gemini) أو نسبة العرض إلى الارتفاع وإنشاء الأشخاص (لميزة Imagen)
- استخدام إعدادات الأمان لضبط احتمالية تلقّي ردود قد تُعتبر ضارة
تقديم ملاحظات حول تجربتك مع Vertex AI in Firebase