Gemini API を使用すると、複数のターンにわたる自由形式の会話を作成できます。Vertex AI in Firebase SDK は会話の状態を管理することでプロセスを簡素化するため、generateContent()
(または generateContentStream()
)とは異なり、会話履歴を自分で保存する必要はありません。
始める前に
まだ行っていない場合は、スタートガイドを完了してください。Firebase プロジェクトの設定、アプリの Firebase への接続、SDK の追加、Vertex AI サービスの初期化、GenerativeModel
インスタンスの作成方法が記載されています。
チャット プロンプト リクエストを送信する
マルチターンの会話(チャットなど)を構築するには、まず startChat()
を呼び出してチャットを初期化します。次に、sendMessage()
を使用して新しいユーザー メッセージを送信します。これにより、メッセージとレスポンスがチャット履歴に追加されます。
会話内のコンテンツに関連付けられた role
には、次の 2 つのオプションがあります。
user
: プロンプトを提供するロール。この値はsendMessage()
の呼び出しのデフォルト値です。別のロールが渡された場合、関数は例外をスローします。model
: レスポンスを提供するロール。このロールは、既存のhistory
でstartChat()
を呼び出す場合に使用できます。
Swift
startChat()
と sendMessage()
を呼び出して、新しいユーザー メッセージを送信できます。
import FirebaseVertexAI
// Initialize the Vertex AI service
let vertex = VertexAI.vertexAI()
// Create a `GenerativeModel` instance with a model that supports your use case
let model = vertex.generativeModel(modelName: "gemini-2.0-flash")
// Optionally specify existing chat history
let history = [
ModelContent(role: "user", parts: "Hello, I have 2 dogs in my house."),
ModelContent(role: "model", parts: "Great to meet you. What would you like to know?"),
]
// Initialize the chat with optional chat history
let chat = model.startChat(history: history)
// To generate text output, call sendMessage and pass in the message
let response = try await chat.sendMessage("How many paws are in my house?")
print(response.text ?? "No text in response.")
Kotlin
startChat()
と sendMessage()
を呼び出して、新しいユーザー メッセージを送信できます。
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
val generativeModel = Firebase.vertexAI.generativeModel("gemini-2.0-flash")
// Initialize the chat
val chat = generativeModel.startChat(
history = listOf(
content(role = "user") { text("Hello, I have 2 dogs in my house.") },
content(role = "model") { text("Great to meet you. What would you like to know?") }
)
)
val response = chat.sendMessage("How many paws are in my house?")
print(response.text)
Java
startChat()
と sendMessage()
を呼び出して、新しいユーザー メッセージを送信できます。
ListenableFuture
を返します。// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
GenerativeModel gm = FirebaseVertexAI.getInstance()
.generativeModel("gemini-2.0-flash");
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
// (optional) Create previous chat history for context
Content.Builder userContentBuilder = new Content.Builder();
userContentBuilder.setRole("user");
userContentBuilder.addText("Hello, I have 2 dogs in my house.");
Content userContent = userContentBuilder.build();
Content.Builder modelContentBuilder = new Content.Builder();
modelContentBuilder.setRole("model");
modelContentBuilder.addText("Great to meet you. What would you like to know?");
Content modelContent = userContentBuilder.build();
List<Content> history = Arrays.asList(userContent, modelContent);
// Initialize the chat
ChatFutures chat = model.startChat(history);
// Create a new user message
Content.Builder messageBuilder = new Content.Builder();
messageBuilder.setRole("user");
messageBuilder.addText("How many paws are in my house?");
Content message = messageBuilder.build();
// Send the message
ListenableFuture<GenerateContentResponse> response = chat.sendMessage(message);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Web
startChat()
と sendMessage()
を呼び出して、新しいユーザー メッセージを送信できます。
import { initializeApp } from "firebase/app";
import { getVertexAI, getGenerativeModel } from "firebase/vertexai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Vertex AI service
const vertexAI = getVertexAI(firebaseApp);
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(vertexAI, { model: "gemini-2.0-flash" });
async function run() {
const chat = model.startChat({
history: [
{
role: "user",
parts: [{ text: "Hello, I have 2 dogs in my house." }],
},
{
role: "model",
parts: [{ text: "Great to meet you. What would you like to know?" }],
},
],
generationConfig: {
maxOutputTokens: 100,
},
});
const msg = "How many paws are in my house?";
const result = await chat.sendMessage(msg);
const response = await result.response;
const text = response.text();
console.log(text);
}
run();
Dart
startChat()
と sendMessage()
を呼び出して、新しいユーザー メッセージを送信できます。
import 'package:firebase_vertexai/firebase_vertexai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
final model =
FirebaseVertexAI.instance.generativeModel(model: 'gemini-2.0-flash');
final chat = model.startChat();
// Provide a prompt that contains text
final prompt = [Content.text('Write a story about a magic backpack.')];
final response = await chat.sendMessage(prompt);
print(response.text);
ユースケースとアプリに適したモデルと、必要に応じてロケーションを選択する方法を学びます。
レスポンスをストリーミングする
このサンプルを試す前に、このガイドの始める前にのセクションを完了していることを確認してください。
モデル生成の結果全体を待たずに、ストリーミングを使用して部分的な結果を処理することで、インタラクションを高速化できます。レスポンスをストリーミングするには、sendMessageStream()
を呼び出します。
Google アシスタントの機能
- 長いプロンプトをモデルに送信する前に、トークンをカウントする方法を学習します。
- Cloud Storage for Firebase を設定して、マルチモーダル リクエストに大きなファイルを含め、プロンプトでファイルを提供するより管理されたソリューションを利用できるようにします。ファイルには、画像、PDF、動画、音声を含めることができます。
- 不正なクライアントによる Gemini API の不正使用から保護するために Firebase App Check を設定するなど、本番環境の準備を検討します。また、本番環境チェックリストも必ずご確認ください。
その他の機能を試す
- テキストのみのプロンプトからテキストを生成する。
- 画像、PDF、動画、音声などのさまざまなファイル形式をプロンプトとして使用してテキストを生成します。
- テキストとマルチモーダル プロンプトの両方から構造化出力(JSON など)を生成します。
- テキスト プロンプトから画像を生成する。
- 関数呼び出しを使用して、生成モデルを外部システムと情報に接続します。
コンテンツ生成を制御する方法
- プロンプト設計を理解する(ベスト プラクティス、戦略、プロンプトの例など)。
- 温度や最大出力トークン(Gemini の場合)やアスペクト比と人物生成(Imagen の場合)など、モデル パラメータを構成します。
- 安全性設定を使用すると、有害と見なされる可能性のある回答が返される確率を調整できます。
サポートされているモデルの詳細
さまざまなユースケースで利用可能なモデルと、その割り当てと料金について学びます。Vertex AI in Firebase の使用感に関するフィードバックを送信する