ساخت مکالمات چند نوبتی (چت) با API جمینی، ساخت مکالمات چند نوبتی (چت) با API Gemini


با استفاده از Gemini API ، می‌توانید مکالمات آزاد را در چندین نوبت ایجاد کنید. Vertex AI in Firebase SDK فرآیند را با مدیریت وضعیت مکالمه ساده می‌کند، بنابراین بر خلاف generateContentStream() یا generateContent() ، مجبور نیستید تاریخچه مکالمه را خودتان ذخیره کنید.

قبل از شروع

اگر قبلاً این کار را نکرده‌اید، راهنمای شروع به کار برای Vertex AI in Firebase SDK را تکمیل کنید. مطمئن شوید که تمام کارهای زیر را انجام داده اید:

  1. یک پروژه Firebase جدید یا موجود راه اندازی کنید، از جمله استفاده از طرح قیمت گذاری Blaze و فعال کردن API های مورد نیاز.

  2. برنامه خود را به Firebase وصل کنید، از جمله ثبت برنامه خود و افزودن پیکربندی Firebase به برنامه خود.

  3. SDK را اضافه کنید و سرویس Vertex AI و مدل تولیدی را در برنامه خود راه اندازی کنید.

بعد از اینکه برنامه خود را به Firebase متصل کردید، SDK را اضافه کردید و سرویس Vertex AI و مدل تولیدی را راه اندازی کردید، آماده فراخوانی Gemini API هستید.

یک درخواست سریع چت ارسال کنید

برای ایجاد یک مکالمه چند نوبتی (مانند چت)، با راه اندازی اولیه چت با فراخوانی startChat() شروع کنید. سپس از sendMessageStream() (یا sendMessage() ) برای ارسال یک پیام کاربر جدید استفاده کنید که پیام و پاسخ را نیز به تاریخچه چت اضافه می کند.

دو گزینه ممکن برای role مرتبط با محتوا در یک مکالمه وجود دارد:

  • user : نقشی که دستورات را ارائه می دهد. این مقدار پیش‌فرض برای فراخوانی به sendMessageStream() (یا sendMessage() ) است و اگر نقش دیگری ارسال شود، تابع یک استثنا ایجاد می‌کند.

  • model : نقشی که پاسخ ها را ارائه می دهد. این نقش هنگام فراخوانی startChat() با history موجود قابل استفاده است.

انتخاب کنید که آیا می‌خواهید پاسخ را پخش کنید ( sendMessageStream ) یا منتظر پاسخ باشید تا کل نتیجه تولید شود ( sendMessage ).

پخش جریانی

می‌توانید با منتظر ماندن برای کل نتیجه تولید مدل، به تعاملات سریع‌تری برسید و در عوض از استریم برای مدیریت نتایج جزئی استفاده کنید.

بدون پخش جریانی

از طرف دیگر، می توانید به جای پخش جریانی، منتظر کل نتیجه باشید. نتیجه تنها پس از تکمیل مدل کل فرآیند تولید برگردانده می شود.

نحوه انتخاب مدل Gemini و به صورت اختیاری مکان مناسب برای مورد استفاده و برنامه خود را بیاموزید.

چه کار دیگری می توانید انجام دهید؟

  • قبل از ارسال پیام های طولانی به مدل، نحوه شمارش نشانه ها را بیاموزید.
  • Cloud Storage for Firebase راه‌اندازی کنید تا بتوانید فایل‌های حجیم را در درخواست‌های چندوجهی خود بگنجانید و راه‌حل مدیریت‌شده‌تری برای ارائه فایل‌ها در درخواست‌ها داشته باشید. فایل‌ها می‌توانند شامل تصاویر، PDF، ویدیو و صدا باشند.
  • به فکر آماده شدن برای تولید، از جمله راه‌اندازی Firebase App Check برای محافظت از Gemini API در برابر سوء استفاده توسط مشتریان غیرمجاز باشید.

سایر قابلیت های Gemini API را امتحان کنید

یاد بگیرید چگونه تولید محتوا را کنترل کنید

همچنین می‌توانید با استفاده از Vertex AI Studio دستورات و پیکربندی‌های مدل را آزمایش کنید.

در مورد مدل های جمینی بیشتر بدانید

در مورد مدل های موجود برای موارد استفاده مختلف و سهمیه ها و قیمت آنها اطلاعات کسب کنید.


درباره تجربه خود با Vertex AI in Firebase بازخورد بدهید