इस गाइड में, चुने गए प्लैटफ़ॉर्म के लिए Vertex AI in Firebase SDK टूल का इस्तेमाल करके, अपने ऐप्लिकेशन से सीधे Vertex AI Gemini API को कॉल करने का तरीका बताया गया है.
ज़रूरी शर्तें
इस गाइड में यह माना गया है कि आपको Android Studio का इस्तेमाल करके अपने ऐप्लिकेशन को डेवलप करने के बारे में Android के लिए ऐप.
पक्का करें कि आपका डेवलपमेंट एनवायरमेंट और Android ऐप्लिकेशन, इन ज़रूरी शर्तों को पूरा करता हो:
- Android Studio (नया वर्शन)
- आपके Android ऐप्लिकेशन को, एपीआई लेवल 21 या उसके बाद के लेवल को टारगेट करना होगा.
(ज़रूरी नहीं) ऐप्लिकेशन का नमूना देखें.
SDK टूल को तुरंत आज़माया जा सकता है. साथ ही, इसके अलग-अलग इस्तेमाल के उदाहरणों को पूरा देखा जा सकता है. अगर आपके पास अपना Android ऐप्लिकेशन नहीं है, तो सैंपल ऐप्लिकेशन का इस्तेमाल करें. सैंपल ऐप्लिकेशन का इस्तेमाल करने के लिए, आपको उसे किसी Firebase प्रोजेक्ट से कनेक्ट करना होगा.
पहला चरण: Firebase प्रोजेक्ट सेट अप करना और अपने ऐप्लिकेशन को Firebase से कनेक्ट करना
अगर आपके पास पहले से ही Firebase प्रोजेक्ट और Firebase से जुड़ा ऐप्लिकेशन है
Firebase कंसोल में, इस लिंक पर जाएं Gemini की मदद से बनाएं पेज.
वह वर्कफ़्लो लॉन्च करने के लिए Vertex AI in Firebase कार्ड पर क्लिक करें जिससे आपको मदद मिलती है नीचे दिए गए टास्क पूरे करें. (ध्यान दें कि यदि आपको कंसोल में Vertex AI, तो ये टास्क पूरे हो जाएंगे.)
Google Analytics 4 प्रॉपर्टी का इस्तेमाल करने के लिए, Bleze के प्राइसिंग प्लान के हिसाब से पैसे चुकाएं.
अपने प्रोजेक्ट के लिए, इन दो एपीआई को चालू करें:
aiplatform.googleapis.com
औरfirebaseml.googleapis.com
.
अपने ऐप्लिकेशन में SDK टूल जोड़ने के लिए, इस गाइड में अगले चरण पर जाएं.
अगर आपके पास पहले से Firebase प्रोजेक्ट और ऐप्लिकेशन, Firebase से जुड़ा नहीं है
दूसरा चरण: SDK टूल जोड़ना
अपना Firebase प्रोजेक्ट सेट अप करके और ऐप्लिकेशन को Firebase से कनेक्ट करके (पिछला चरण देखें), अब अपने ऐप्लिकेशन में Vertex AI in Firebase SDK टूल जोड़ा जा सकता है.
Android के लिए Vertex AI in Firebase SDK टूल (firebase-vertexai
), Vertex AI Gemini API को ऐक्सेस करने की सुविधा देता है.
आपके मॉड्यूल (ऐप्लिकेशन-लेवल) Gradle कॉन्फ़िगरेशन फ़ाइल में
(जैसे, <project>/<app-module>/build.gradle.kts
), इस कॉलम के लिए डिपेंडेंसी जोड़ें
Android के लिए Vertex AI in Firebase SDK टूल:
Kotlin+KTX
dependencies {
// ... other androidx dependencies
// add the dependency for the Vertex AI in Firebase SDK for Android
implementation("com.google.firebase:firebase-vertexai:16.0.0-beta06")
}
Java
Java के लिए, आपको दो अतिरिक्त लाइब्रेरी जोड़नी होंगी.
dependencies {
// ... other androidx dependencies
// add the dependency for the Vertex AI in Firebase SDK for Android
implementation("com.google.firebase:firebase-vertexai:16.0.0-beta06")
// Required for one-shot operations (to use `ListenableFuture` from Guava Android)
implementation("com.google.guava:guava:31.0.1-android")
// Required for streaming operations (to use `Publisher` from Reactive Streams)
implementation("org.reactivestreams:reactive-streams:1.0.4")
}
तीसरा चरण: Vertex AI सेवा और जनरेटिव मॉडल को शुरू करना
कोई भी एपीआई कॉल करने से पहले, आपको Vertex AI सेवा और जनरेटिव मॉडल को शुरू करना होगा.
Kotlin+KTX
Kotlin के लिए, इस SDK टूल में मौजूद मैथड, सस्पेंड फ़ंक्शन हैं. इन्हें कोरूटीन स्कोप से कॉल किया जाना चाहिए.// Initialize the Vertex AI service and the generative model
// Specify a model that supports your use case
// Gemini 1.5 models are versatile and can be used with all API capabilities
val generativeModel = Firebase.vertexAI.generativeModel("gemini-1.5-flash")
Java
Java के लिए, इस SDK टूल की स्ट्रीमिंग का तरीका Reactive Streams लाइब्रेरी सेPublisher
टाइप.
// Initialize the Vertex AI service and the generative model
// Specify a model that supports your use case
// Gemini 1.5 models are versatile and can be used with all API capabilities
GenerativeModel gm = FirebaseVertexAI.getInstance()
.generativeModel("gemini-1.5-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
शुरुआती निर्देशों वाली गाइड को पढ़ने के बाद, अपने इस्तेमाल के उदाहरण और ऐप्लिकेशन के हिसाब से, Gemini मॉडल और (ज़रूरी नहीं) जगह चुनने का तरीका जानें.
चौथा चरण: Vertex AI Gemini API को कॉल करना
अब आपने अपने ऐप्लिकेशन को Firebase से कनेक्ट कर लिया है, SDK टूल जोड़ लिया है, और शुरू कर दिया है Vertex AI सेवा और जनरेटिव मॉडल आप Vertex AI Gemini API को कॉल करने के लिए तैयार हैं.
generateContent()
का इस्तेमाल करके, सिर्फ़ टेक्स्ट वाले प्रॉम्प्ट से टेक्स्ट जनरेट किया जा सकता है
अनुरोध:
Kotlin+KTX
Kotlin की मदद से, इस SDK टूल में दिए गए तरीके सस्पेंड फ़ंक्शन हैं और उन्हें कोरूटीन के स्कोप से बाहर रखा गया है.// Initialize the Vertex AI service and the generative model
// Specify a model that supports your use case
// Gemini 1.5 models are versatile and can be used with all API capabilities
val generativeModel = Firebase.vertexAI.generativeModel("gemini-1.5-flash")
// Provide a prompt that contains text
val prompt = "Write a story about a magic backpack."
// To generate text output, call generateContent with the text input
val response = generativeModel.generateContent(prompt)
print(response.text)
Java
Java के लिए, इस SDK टूल की मदद सेListenableFuture
.
// Initialize the Vertex AI service and the generative model
// Specify a model that supports your use case
// Gemini 1.5 models are versatile and can be used with all API capabilities
GenerativeModel gm = FirebaseVertexAI.getInstance()
.generativeModel("gemini-1.5-flash");
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
// Provide a prompt that contains text
Content prompt = new Content.Builder()
.addText("Write a story about a magic backpack.")
.build();
// To generate text output, call generateContent with the text input
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
तुम और क्या कर सकती हो?
Gemini के मॉडल के बारे में ज़्यादा जानें
ज़्यादा जानने के लिए, अलग-अलग कामों के लिए उपलब्ध मॉडल और उनका कोटा और कीमत.
Gemini API की अन्य सुविधाएं आज़माएं
- सिर्फ़ टेक्स्ट वाले प्रॉम्प्ट से टेक्स्ट जनरेट करने के बारे में ज़्यादा जानें. साथ ही, जवाब को स्ट्रीम करने का तरीका भी जानें.
- मल्टीमोडल प्रॉम्प्ट (जैसे, टेक्स्ट, इमेज, PDF, वीडियो, और ऑडियो) से टेक्स्ट जनरेट करें.
- एक के बाद एक बातचीत (चैट) बनाएं.
- जनरेटिव मॉडल को बाहरी सिस्टम और जानकारी से कनेक्ट करने के लिए, फ़ंक्शन कॉल का इस्तेमाल करें.
कॉन्टेंट जनरेट करने की प्रोसेस को कंट्रोल करने का तरीका जानें
- प्रॉम्प्ट डिज़ाइन को समझना, जिसमें ये शामिल हैं सबसे सही तरीके, रणनीतियां, और प्रॉम्प्ट के उदाहरण.
- मॉडल पैरामीटर कॉन्फ़िगर करें, जैसे कि तापमान और ज़्यादा से ज़्यादा आउटपुट टोकन.
- सुरक्षा सेटिंग का इस्तेमाल करके, नुकसान पहुंचाने वाले जवाब मिलने की संभावना कम हो.
Vertex AI in Firebase इस्तेमाल करने के अपने अनुभव के बारे में सुझाव/राय देना या शिकायत करना