بدء استخدام Gemini API باستخدام Vertex AI في حِزم تطوير البرامج (SDK) لمنصة Firebase


يوضِّح لك هذا الدليل كيفية بدء إجراء مكالمات إلى "Vertex AI Gemini API" مباشرةً من تطبيقك باستخدام حزمة تطوير البرامج (SDK) من Vertex AI in Firebase للمنصة التي اخترتها.

المتطلبات الأساسية

يفترض هذا الدليل أنّك على دراية باستخدام JavaScript لتطوير تطبيقات الويب. هذا الدليل مستقل عن إطار العمل.

  • يُرجى التأكّد من أنّ بيئة التطوير وتطبيق الويب تستوفيان المتطلبات التالية:

    • (اختياري) Node.js
    • متصفح ويب حديث
  • (اختياري) يمكنك الاطّلاع على نموذج التطبيق.

    تنزيل نموذج التطبيق

    يمكنك تجربة حزمة تطوير البرامج (SDK) بسرعة، أو الاطّلاع على تنفيذ كامل لحالات الاستخدام المختلفة، أو استخدام نموذج التطبيق إذا لم يكن لديك تطبيق ويب خاص بك. لاستخدام نموذج التطبيق، عليك أولاً ربطه بمشروع على Firebase.

الخطوة 1: إعداد مشروع على Firebase وربط تطبيقك بمنصّة Firebase

إذا كان لديك مشروع على Firebase وتطبيق مرتبط بمنصّة Firebase

  1. في وحدة تحكّم Firebase، انتقِل إلى صفحة الإنشاء باستخدام Gemini.

  2. انقر على بطاقة Vertex AI in Firebase لبدء سير عمل يساعدك في completing the following tasks:

  3. انتقِل إلى الخطوة التالية في هذا الدليل لإضافة حزمة SDK إلى تطبيقك.

إذا لم يكن لديك مشروع على Firebase وتطبيق مرتبط به


الخطوة 2: إضافة حزمة SDK

بعد إعداد مشروعك في Firebase وربط تطبيقك بمنصّة Firebase (راجِع الخطوة السابقة)، يمكنك الآن إضافة حزمة تطوير البرامج (SDK) Vertex AI in Firebase إلى تطبيقك.

توفّر مكتبة Vertex AI in Firebase إمكانية الوصول إلى Vertex AI Gemini API ويتم تضمينها كجزء من حزمة تطوير البرامج (SDK) لـ Firebase JavaScript على الويب.

  1. ثبِّت حزمة تطوير البرامج (SDK) لبرنامج Firebase باستخدام JavaScript على الويب باستخدام npm:

      npm install firebase
    
  2. إعداد Firebase في تطبيقك:

      import { initializeApp } from "firebase/app";
    
      // TODO(developer) Replace the following with your app's Firebase configuration
      // See: https://firebase.google.com/docs/web/learn-more#config-object
      const firebaseConfig = {
        // ...
      };
    
      // Initialize FirebaseApp
      const firebaseApp = initializeApp(firebaseConfig);
    

الخطوة 3: بدء خدمة Vertex AI والنموذج التوليدي

قبل إجراء أي طلبات بيانات من واجهة برمجة التطبيقات، يجب إعداد خدمة Vertex AI والنموذج التوليدي.

import { initializeApp } from "firebase/app";
import { getVertexAI, getGenerativeModel } from "firebase/vertexai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Vertex AI service
const vertexAI = getVertexAI(firebaseApp);

// Initialize the generative model with a model that supports your use case
// Gemini 1.5 models are versatile and can be used with all API capabilities
const model = getGenerativeModel(vertexAI, { model: "gemini-1.5-flash" });

عند إكمال دليل البدء، تعرَّف على كيفية اختيار نموذج Gemini وموقع جغرافي مناسب لحالة الاستخدام والتطبيق (اختياري).

الخطوة 4: طلب Vertex AI Gemini API

أصبحت جاهزًا الآن لطلب Vertex AI Gemini API، بعد ربط تطبيقك بمنصّة Firebase وإضافة حزمة تطوير البرامج (SDK) وإعداد خدمة Vertex AI والنموذج التوليدي.

يمكنك استخدام generateContent() لإنشاء نص من طلب نصي فقط:

import { initializeApp } from "firebase/app";
import { getVertexAI, getGenerativeModel } from "firebase/vertexai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Vertex AI service
const vertexAI = getVertexAI(firebaseApp);

// Initialize the generative model with a model that supports your use case
// Gemini 1.5 models are versatile and can be used with all API capabilities
const model = getGenerativeModel(vertexAI, { model: "gemini-1.5-flash" });

// Wrap in an async function so you can use await
async function run() {
  // Provide a prompt that contains text
  const prompt = "Write a story about a magic backpack."

  // To generate text output, call generateContent with the text input
  const result = await model.generateContent(prompt);

  const response = result.response;
  const text = response.text();
  console.log(text);
}

run();

ما هي الإجراءات الإضافية التي يمكنك تنفيذها؟

مزيد من المعلومات حول نماذج Gemini

تعرَّف على مزيد من المعلومات حول النماذج المتاحة لحالات الاستخدام المختلفة وأسعارها وأسعارها.

تجربة إمكانات أخرى في Gemini API

التعرّف على طريقة التحكّم في إنشاء المحتوى

يمكنك أيضًا تجربة الطلبات وإعدادات النماذج باستخدام Vertex AI Studio.


تقديم ملاحظات حول تجربتك في استخدام "Vertex AI in Firebase"